• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 310
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • ABSTRACT
  • PREFACE
  • CONTENTS
  • LIST OF FIGURES
  • LIST OF TABLES
  • 1. A REVIEW OF ELECTRICAL, OPTICAL, STRUCTURAL AND TOPOLOGICAL STUDIES IN CUPC, NIPC AND COPC THIN FILMS
  • 1.1 INTRODUCTION
  • 1.2 ORGANIC SEMICONDUCTORS
  • Table 1.1: Comparison of the electrical properties of the inorganicsemiconductor germanium and organic semiconductor CuPc
  • 1.3. Molecular Structure
  • Fig.1.1 Basic structural unit of a phthalocyanine molecule
  • Fig.1.2 Unit cell of a base centered phthalocyanine molecule.
  • Fig.1.3. Normal projections of two molecules of metal substituted phthalocyanine
  • 1.4. Studies on Phthalocyanine Thin Films
  • A Electrical Studies
  • B. Optical Studies
  • C. Structural Studies
  • D. Topological Studies
  • References
  • 2. APPARATUS AND EXPERIMENTAL TECHNIQUES USED IN THE PRESENT STUDY
  • 2.1 Introduction
  • 2.2 Methods of Preparation of Thin Films
  • 2.2. 1 Thermal Evaporation Technique
  • 2.2.1.1 Effect of Residual Gases
  • Table 2.1 Data on the residual air at 298K in a typical vacuum used for film deposition
  • 2.2.1.2 Effect of Vapour Beam Intensity
  • 2.2.1.3 Effect of Substrate Surface
  • 2.2.1.4 Effect of Evaporation Rate
  • 2.2.1.5 Contamination from Vapour source
  • 2.2.1.6 Purity of the Evaporating Materials
  • 2.2.1.7 Production of Vacuum
  • Oil Sealed Rotary Pump
  • Fig.2.1 Schematic diagram of the cross section of oil sealed rotary pump.
  • Diffusion pump
  • Fig.2.2: Schematic diagram of the cross section of a diffusion pump
  • 2.2.2 Vacuum coating unit
  • Fig.2.3: Schematic diagram of a vacuum coating unit
  • Fig.2.4: Schematic representation of Pirani guage
  • Fig.2.5. Schematic representation of penning gauge
  • Fig.2.6: Photograph of “Hind Hivac” coating unit (Model No. 12 A4)
  • 2.2.3 Substrate Cleaning
  • 2.2.4 Substrate Heater
  • 2.2.5 Preparation of films
  • 2.3 Sample annealing
  • Fig.2.7. Block diagram of the temperature controller cum recorder
  • Fig.2.8: Photograph of annealing unit
  • 2.4 Thickness Measurement
  • 2.4.1 Tolansky’s Multiple Beam Interference Technique
  • Fig.2.9. Schematic representation of the multiple beam interference
  • 2.5 Conductivity Cell
  • Fig.2.10. Schematic diagram of the cross section of the conductivity cell
  • 2.6 Keithley Programmable Electrometer 617
  • Fig.2.11. Schematic diagram of measuring resistance on Keithley usingohms function.
  • Fig.2.12: Schematic diagram of measuring resistance on Keithley usingV/I function
  • Fig.2.13: Schematic diagram of electrical conductivity measurement (all dimensions are in mm)
  • Fig.2.14. Photograph of the electrical conductivity experimental set up
  • 2.7 UV-Visible Spectrophotometer
  • Fig.2.15: Block diagram of the optical system of the Spectrophotometer (Shimadzu 160A)
  • Fig.2.16: Block diagram of the electrical system of the spectrophotometer (Shimadzu 160A)
  • Fig.2.17 Photograph of the spectrophotometer
  • 2.8 X-ray Diffractometer
  • Fig.2.18 Block diagram of BRUKER D5005 diffractometer
  • Fig.2.19 Photograph of the BRUKER D5005 diffractometer
  • 2.9 Scanning Electron Microscopy (SEM)
  • Fig.2.20 Interaction between incident electrons and specimen
  • Fig.2.21 Secondary electron detector
  • Fig.2.22 Edge effect, secondary electron emission differing withsurface condition
  • 2.9.1 Influence of charge-up on image quality
  • 2.9.2 Specimen damage by electron beam
  • 2.9.3 Backscattered electrons
  • Fig.2.23: back scattered electron detector
  • 2.9.4 Resolution of the SEM
  • Fig.2.24: Photograph of LEO 435VP Scanning Electron Microscope.
  • 2.9.5 Energy Dispersive X-ray Analysis (EDAX)
  • Reference
  • 3. ELECTRICAL STUDIES ON COPPER PHTHALOCYANINE, NICKEL PHTHALOCYANINE AND COBALT PHTHALOCYANINE THIN FILMS
  • 3.1 Introduction
  • 3.2 Theory
  • 3.3 Experiment
  • 3.4 Results and Discussion
  • 3.4.1 Dependence of film thickness
  • Fig.3.4.1: ln σ versus 1000/T plot of CuPc thin film of thickness 180nm
  • Fig.3.4.2: ln σ versus 1000/T plot of CuPc thin film of thickness 301nm
  • Fig.3.4.3: ln σ versus 1000/T plot of CuPc thin film of thickness 467nm
  • Table 3.4.1: Variation of activation energy for CuPc thin films with different thickness
  • Fig.3.4.4: ln σ versus 1000/T plot of NiPc thin film of thickness 94nm
  • Fig.3.4.5: ln σ versus 1000/T plot of NiPc thin film of thickness 132nm
  • Fig.3.4.6: ln σ versus 1000/T plot of NiPc thin film of thickness 156nm
  • Fig.3.4.7: ln σ versus 1000/T plot of NiPc thin film of thickness 194nm
  • Table 3.4.2: Variation of activation energy for NiPc thin films with different thickness
  • Fig.3.4.8: ln σ versus 1000/T plot of CoPc thin film of thickness 181nm
  • Fig.3.4.9: ln σ versus 1000/T plot of CoPc thin film of thickness 301nm
  • Fig.3.4.10: ln σ versus 1000/T plot of CoPc thin film of thickness 405nm
  • Table 3.4.3: Variation of activation energy for CoPc thin films with different thicknesses
  • 3.4.2 Dependence of substrate temperature
  • Fig.3.4.11: ln σ versus 1000/T plot of CuPc thin film prepared at substrate temperature 318K.
  • Fig.3.4.12: ln σ versus 1000/T plot of CuPc thin film prepared at substrate temperature 363K.
  • Fig.3.4.13: ln σ versus 1000/T plot of CuPc thin film prepared at substrate temperature 408K.
  • Fig.3.4.14: ln σ versus 1000/T plot of CuPc thin film prepared at substrate temperature 458K.
  • Table 3.4.4: Variation of activation energy for CuPc thin films with different substrate temperatures
  • Fig.3.4.15: ln σ versus 1000/T plot of NiPc thin film prepared at substrate temperature 318K.
  • Fig.3.4.16: ln σ versus 1000/T plot of NiPc thin film prepared at substrate temperature 363K.
  • Fig.3.4.17: In σ versus 1000/T plot of NiPc thin film prepared at substrate temperature 408K.
  • Fig.3.4.18: ln σ versus 1000/T plot of NiPc thin film prepared at substrate temperature 458K.
  • Table 3.4.5: Variation of activation energy for NiPc thin films with different substrate temperatures.
  • Fig.3.4.19: ln σ versus 1000/T plot of CoPc thin film prepared at substrate temperature 318K.
  • Fig.3.4.20: ln σ versus 1000/T plot of CoPc thin film prepared at substrate temperature 363K.
  • Fig.3.4.21: ln σ versus 1000/T plot of CoPc thin film prepared at substrate temperature 408K.
  • Fig.3.4.22: ln σ versus 1000/T plot of CoPc thin film prepared at substrate temperature 458K.
  • Table 3.4.6: Variation of activation energy for CoPc thin films with different substrate temperatures
  • 3.4.3 Dependence of air - annealing
  • Fig. 3.4.23: ln σ versus 1000/T plot of CuPc thin film annealed 313K
  • Fig.3.4.24: ln σ versus 1000/T plot of CuPc thin film annealed 353K
  • Fig.3.4.25: ln σ versus 1000/T plot of CuPc thin film annealed 393K
  • Fig.3.4.26: ln σ versus 1000/T plot of CuPc thin film annealed 433K
  • Table 3.4.7: Variation of activation energy for CuPc thin films with different annealing temperature
  • Fig.3.4.27: ln σ versus 1000/T plot of NiPc thin film annealed at 313K
  • Fig.3.4.28: ln σ versus 1000/T plot of NiPc thin film annealed at 353K
  • Fig.3.4.29: ln σ versus 1000/T plot of NiPc thin film annealed at 393K
  • Fig.3.4.30: ln σ versus 1000/T plot of NiPc thin film annealed at 433K
  • Table 3.4.8: Variation of activation energy for NiPc thin films with different annealing temperatures
  • Fig.3.4.31: ln σ versus 1000/T plot of CoPc thin film annealed at 313K.
  • Fig.3.4.32: ln σ versus 1000/T plot of CoPc thin film annealed at 353K.
  • Fig.3.4.33: ln σ versus 1000/T plot of CoPc thin film annealed at 393K.
  • Fig.3.4.34: ln σ versus 1000/T plot of CoPc thin film annealed at 433K.
  • Table 3.4.9: Variation of activation energy for CoPc thin films with different annealing temperatures
  • CONCLUSION
  • References
  • 4. OPTICAL STUDIES IN COPPER PHTHALOCYANINE, NICKEL PHTHALOCYANINE AND COBALT PHTHALOCYANINE THIN FILMS
  • 4.1. Introduction
  • Fig.4.1.1: The schematic diagram of energy levels in metalphthalocyanine and the various allowed transitions
  • 4.2. Theory
  • Fig.4.2.1 Schematic diagram showing direct transition from valenceband to conduction band
  • Fig.4.2.2: Schematic diagram showing indirect transition from valenceband to conduction band
  • Fig.4.2.3: Illustration of Burstein-Moss shift.
  • 4.3. Experiment
  • 4.4 Results and Discussion
  • 4.4.1 Dependence of film thickness
  • Fig.4.4.1: Absorbance versus wavelength spectrum of CuPc thin filmof thickness 180nm.
  • Fig.4.4.2: Plot of a2 versus h for CuPc thin film of thickness 180nm
  • Fig.4.4.3: Plot of a2 versus h for CuPc thin film of thickness 180nm (trap level)
  • Fig.4.4.4: Plot of a2 versus h for CuPc thin film of thickness 180nm (trap level)
  • Fig.4.4.5 Absorbance versus wavelength plot of CuPc thin film ofthickness 220nm
  • Fig.4.4.6: Plot of a2 versus h for CuPc thin film of thickness 220nm
  • Fig.4.4.7 Plot of a2 versus h for CuPc thin film of thickness 220nm (trap level)
  • Fig.4.4.8: Plot of a2 versus h for CuPc thin film of thickness 220nm (trap level)
  • Fig.4.4.9 Absorbance versus wavelength plot of CuPc thin film ofthickness 360nm
  • Fig.4.4.10: Plot of a2 versus h for CuPc thin film of thickness 360nm
  • Fig.4.4.11: Plot of a2 versus h for CuPc thin film of thickness 360nm (trap level)
  • Fig. 4.4.12: Plot of a2 versus h for CuPc thin film of thickness 360nm (trap level)
  • Fig.4.4.13: Absorbance versus wavelength plot of CuPc thin film ofthickness 400nm
  • Fig. 4.4.14 Plot of a2 versus h for CuPc thin film of thickness 400nm
  • Fig.4.4.15 Plot of a2 versus h for CuPc thin film of thickness 400nm (trap level)
  • Fig.4.4.16 Plot of a2 versus h for CuPc thin film of thickness 400nm (trap level)
  • Table4.4.1 The optical band gap energies of CuPc thin films of differentthicknesses
  • Fig.4.4.17 Absorbance versus wavelength plot of NiPc thin film ofthickness 94nm.
  • Fig.4.4.18 Plot of a2 versus h for NiPc thin film of thickness 94nm
  • Fig.4.4.19 Plot of a2 versus h for NiPc thin film of thickness 94nm (trap level)
  • Fig.4.4.20 Plot of a2 versus h for NiPc thin film of thickness 94nm (trap level)
  • Fig.4.4.21 Absorbance versus wavelength spectrum of NiPc thin filmof thickness 133nm
  • Fig.4.4.22 Plot of a2 versus h for NiPc thin film of thickness 133nm
  • Fig.4.4.23 Plot of a2 versus h for NiPc thin film of thickness 133nm (trap level)
  • Fig.4.4.24 Plot of a2 versus h for NiPc thin film of thickness 133nm (trap level)
  • Fig.4.4.25 Absorbance versus wavelength plot of NiPc thin film ofthickness 156nm
  • Fig.4.4.26 Plot of a2 versus h for NiPc thin film of thickness 156nm
  • Fig.4.4.27 Plot of a2 versus h for NiPc thin film of thickness 156nm (trap level)
  • Fig.4.4.28 Plot of a2 versus h for NiPc thin film of thickness 156nm (trap level)
  • Fig.4.4.29 Absorbance versus wavelength plot of NiPc thin film ofthickness 195nm
  • Fig. 4.4.30 Plot of a2 versus h for NiPc thin film of thickness 195nm
  • Fig.4.4.31 Plot of a2 versus h for NiPc thin film of thickness 195nm (trap level)
  • Fig.4.4.32 Plot of a2 versus h for NiPc thin film of thickness 195nm (trap level)
  • Table 4.4.2 The optical band gap energies of NiPc thin films of differentthickness
  • Fig.4.4.33 Absorbance versus wavelength plot of CoPc thin film ofthickness 297nm
  • Fig.4.4.34 Plot of a2 versus h for CoPc thin film of thickness 297nm
  • Fig.4.4.35 Plot of a2 versus h for CoPc thin film of thickness 297 nm (trap level)
  • Fig.4.4.36 Plot of a2 versus h for CoPc thin film of thickness297nm (trap level)
  • Fig.4.4.37 Absorbance versus wavelength plot of CoPc thin film ofthickness 425nm
  • Fig.4.4.38 Plot of a2 versus h for CoPc thin film of thickness 425nm
  • Fig.4.4.39 Plot of a2 versus h for CoPc thin film of thickness425nm (trap level)
  • Fig.4.4.40 Plot of a2 versus h for CoPc thin film of thickness425nm (trap level)
  • Fig.4.4.41 Absorbance versus wavelength plot of CoPc thin film ofthickness 443nm.
  • Fig.4.4.42 Plot of a2 versus h for CoPc thin film of thickness 443nm
  • Fig.4.4.43 Plot of a2 versus h for CoPc thin film of thickness443nm (trap level)
  • Fig.4.4.44 Plot of a2 versus h for CoPc thin film of thickness 443nm (trap level)
  • Table 4.4.3 The optical band gap energies of CoPc thin films of differentthickness
  • 4.4.2 Dependence of substrate temperature
  • Fig.4.4.45 Absorbance versus wavelength plot of CuPc thin filmprepared at substrate temperature 318K.
  • Fig.4.4.46 Plot of a2 versus h for CuPc thin film prepared at substratetemperature 318K.
  • Fig.4.4.47: Plot of a2 versus h for CuPc thin film prepared at substratetemperature 318K (trap level)
  • Fig.4.4.48 Absorbance versus wavelength plot of CuPc thin filmprepared at substrate temperature 363K.
  • Fig.4.4.49: Plot of a2 versus h for CuPc thin film prepared atsubstrate temperature 363K.
  • Fig.4.4.50 Plot of a2 versus h for CuPc thin film prepared at substratetemperature 363K (trap level)
  • Fig.4.4.51 Absorbance versus wavelength plot of CuPc thin filmprepared at substrate temperature 408K.
  • Fig.4.4.52 Plot of a2 versus h for CuPc thin film prepared at substratetemperature 408
  • Fig.4.4.53 Plot of a2 versus h for CuPc thin film prepared atsubstrate temperature 408K (trap level)
  • Fig.4.4.54: Absorbance versus wavelength plot of CuPc thin filmprepared at substrate temperature 458K.
  • Fig.4.4.55: Plot of a2 versus h for CuPc thin film prepared at substratetemperature 458K.
  • Fig.4.4.56: Plot of a2 versus h for CuPc thin film prepared at substratetemperature 458K (trap level)
  • Fig.4.4.57: Plot of a2 versus h for CuPc thin film prepared at substratetemperature 458K (trap level)
  • Table 4.4.4 The optical band gap energies of CuPc thin films deposited atdifferent substrate temperatures.
  • Fig.4.4.58 Absorbance versus wavelength plot of NiPc thin filmprepared at substrate temperature 318K.
  • Fig.4.4.59 Plot of a2 versus h for NiPc thin film prepared at substratetemperature 318K.
  • Fig.4.4.60 Plot of a2 versus h for NiPc thin film prepared at substratetemperature 318K (trap level)
  • Fig.4.4.61 Plot of a2 versus h for NiPc thin film prepared at substratetemperature 318K (trap level)
  • Fig.4.4.62 Absorbance versus wavelength plot of NiPc thin filmprepared at substrate temperature 363K.
  • Fig.4.4.63 Plot of a2 versus h for NiPc thin film prepared at substratetemperature 363K.
  • Fig.4.4.64 Plot of a2 versus h for NiPc thin film prepared at substratetemperature 363K (trap level)
  • Fig.4.4.65 Plot of a2 versus h for NiPc thin film prepared at substratetemperature 363K (trap level)
  • Fig.4.4.66 Absorbance versus wavelength plot of NiPc thin filmprepared at substrate temperature 408K
  • Fig.4.4.67 Plot of a2 versus h for NiPc thin film prepared at substratetemperature 408K.
  • Fig.4.4.68 Plot of a2 versus h for NiPc thin film prepared at substratetemperature 408K (trap level)
  • Fig.4.4.69 Plot of a2 versus h for NiPc thin film prepared at substratetemperature 408K (trap level)
  • Fig.4.4.70 Absorbance versus wavelength plot of NiPc thin filmprepared at temperature 458K.
  • Fig.4.4.71 Plot of a2 versus h for NiPc thin film prepared at substratetemperature 458K.
  • Fig.4.4.72 Plot of a2 versus h for NiPc thin film prepared at substratetemperature 458K (trap level)
  • Fig.4.4.73 Plot of a2 versus h for NiPc thin film prepared at substratetemperature 458K (trap level)
  • Table 4.4.5 The optical band gap energies of NiPc thin films deposited atdifferent substrate temperatures.
  • Fig.4.4.74 Absorbance versus wavelength plot of CoPc thin filmprepared at substrate temperature 318K.
  • Fig.4.4.75: Plot of a2 versus h for CoPc thin film prepared at substratetemperature 318K.
  • Fig.4.4.76: Plot of a2 versus h for CoPc thin film prepared at substratetemperature 318K (trap level)
  • Fig.4.4.77: Plot of a2 versus h for CoPc thin film prepared at substratetemperature 318K (trap level)
  • Fig.4.4.78: Absorbance versus wavelength plot of CoPc thin filmprepared at substrate temperature 363K.
  • Fig.4.4.79 Plot of a2 versus h for CoPc thin film prepared at substratetemperature 363K.
  • Fig.4.4.80: Plot of a2 versus h for CoPc thin film prepared at substratetemperature 363K (trap level)
  • Fig.4.4.81: Plot of a2 versus h for CoPc thin film prepared at substratetemperature 363K (trap level)
  • Fig.4.4.82: Absorbance versus wavelength plot of CoPc thin filmprepared at substrate temperature 408K.
  • Fig.4.4.83: Plot of a2 versus h for CoPc thin film prepared at substratetemperature 408K.
  • Fig.4.4.84: Plot of a2 versus h for CoPc thin film prepared at substratetemperature 408K (trap level)
  • Fig.4.4.85: Plot of a2 versus h for CoPc thin film prepared atsubstrate temperature 408K (trap level)
  • Fig.4.4.86: Absorbance versus wavelength plot of CoPc thin filmprepared at substrate temperature 458K.
  • Fig.4.4.87: Plot of a2 versus h for CoPc thin film prepared at substratetemperature 458K.
  • Fig.4.4.88 Plot of a2 versus h for CoPc thin film prepared at substratetemperature 458K (trap level)
  • Fig.4.4.89: Plot of a2 versus h for CoPc thin film prepared at substratetemperature 458K (trap level)
  • Table 4.4.6 The optical band gap energies of CoPc thin films deposited atdifferent substrate temperatures
  • 4.4.3. Dependence of air annealing
  • Fig. 4.4.90: Absorbance versus wavelength plot of CuPc thin filmannealed at temperature 313K.
  • Fig.4.4.91: Plot of a2 versus h for CuPc thin film annealed attemperature 313K
  • Fig.4.4.92: Plot of a2 versus h for CuPc thin film annealed attemperature 313K (trap level)
  • Fig.4.4.93: Plot of a2 versus h for CuPc thin film annealed attemperature 313K (trap level)
  • Fig.4.4.94: Absorbance versus wavelength plot of CuPc thin filmannealed at temperature 373K.
  • Fig.4.4.95: Plot of a2 versus h for CuPc thin film annealed attemperature 373K.
  • Fig.4.4.96: Plot of a2 versus h for CuPc thin film annealed attemperature 373K (trap level)
  • Fig.4.4.97: Plot of a2 versus h for CuPc thin film annealed attemperature 373K (trap level)
  • Fig.4.4.98: Absorbance versus wavelength plot of CuPc thin filmannealed at temperature 433K
  • Fig.4.4.99: Plot of a2 versus h for CuPc thin film annealed attemperature 433K
  • Fig.4.4.100: Plot of a2 versus h for CuPc thin film annealed attemperature 433K (trap level)
  • Fig.4.4.101: Plot of a2 versus h for CuPc thin film annealed attemperature 433K (trap level)
  • Table 4.4.7 The optical band gap energies of CuPc thin films annealed atdifferent temperature
  • Fig.4.4.102: Absorbance versus wavelength plot of NiPc thin filmannealed at temperature 313K.
  • Fig.4.4.103: Plot of a2 versus h for NiPc thin film annealed attemperature 313K.
  • Fig.4.4.104: Plot of a2 versus h for NiPc thin film annealed attemperature 313K (trap level)
  • Fig.4.4.105: Plot of a2 versus h for NiPc thin film annealed attemperature 313K (trap level)
  • Fig.4.4.106: Absorbance versus wavelength plot of NiPc thin filmannealed at temperature 353K.
  • Fig.4.4.107: Plot of a2 versus h for NiPc thin film annealed attemperature 353K.
  • Fig.4.4.108: Plot of a2 versus h for NiPc thin film annealed attemperature 353K (trap level)
  • Fig.4.4.109: Plot of a2 versus h for NiPc thin film annealed attemperature 353K (trap level)
  • Fig.4.4.110: Absorbance versus wavelength plot of NiPc thin filmannealed at temperature 393K.
  • Fig.4.4.111: Plot of a2 versus h for NiPc thin film annealed attemperature 393K.
  • Fig.4.4.112: Plot of a2 versus h for NiPc thin film annealed attemperature 393K (trap level)
  • Fig.4.4.113: Plot of a2 versus h for NiPc thin film annealed attemperature 393K (trap level)
  • Fig.4.4.114: Absorbance versus wavelength plot of CuPc thin filmannealed at temperature 433K.
  • Fig.4.4.115: Plot of a2 versus h for NiPc thin film annealed attemperature 433K.
  • Fig.4.4.116: Plot of a2 versus h for NiPc thin film annealed attemperature 433K (trap level)
  • Fig.4.4.117: Plot of a2 versus h for NiPc thin film annealed attemperature 433K (trap level)
  • Table 4.4.8: The optical band gap energies of NiPc thin films annealed atdifferent temperatures
  • Fig. 4.4.118: Absorbance versus wavelength plot of CoPc thin filmprepared at temperature 313K.
  • Fig.4.4.119: Plot of a2 versus h for CoPc thin film annealed attemperature 313K.
  • Fig.4.4.120: Plot of a2 versus h for CoPc thin film annealed attemperature 313K (trap level)
  • Fig.4.4.121: Plot of a2 versus h for CoPc thin film annealed attemperature 313K (trap level)
  • Fig. 4.4.122: Absorbance versus wavelength plot of CoPc thin filmannealed at temperature 353K
  • Fig.4.4.123: Plot of a2 versus h for CoPc thin film annealed attemperature 353K (trap level)
  • Fig.4.4.124: Plot of a2 versus h for CoPc thin film annealed attemperature 353K (trap level)
  • Fig.4.4.125: Plot of a2 versus h for CoPc thin film annealed attemperature 353K (trap level
  • Fig.4.4.126: Absorbance versus wavelength plot of NiPc thin filmannealed at temperature 393K.
  • Fig.4.4.127: Plot of a2 versus h for CoPc thin film annealed attemperature 393K.
  • Fig.4.4.128: Plot of a2 versus h for CoPc thin film annealed attemperature 393K (trap level)
  • Fig.4.4.129: Plot of a2 versus h for CoPc thin film annealed attemperature 393K (trap level)
  • Fig.4.4.130: Absorbance versus wavelength plot of CoPc thin filmannealed at temperature 433K.
  • Fig.4.4.131: Plot of a2 versus h for CoPc thin film annealed attemperature 433K.
  • Fig.4.4.132: Plot of a2 versus h for CoPc thin film annealed attemperature 433K (trap level)
  • Fig.4.4.133: Plot of
  • Table 4.4.9 The optical band gap energies of CoPc thin films annealed atdifferent temperature
  • 4.5. Conclusion
  • References
  • 5. STRUCTURAL STUDIES INCOPPER PHTHALOCYANINE, NICKEL PHTHALOCYANINEAND COBALT PHTHALOCYANINE THIN FILMS
  • 5.1. Introduction
  • 5.2. Theory
  • 5.3. Experiment
  • 5.4. Results and Discussion
  • Fig.5.4.1: X-ray diffractogram of CuPc powder.
  • Fig.5.4.2: X-ray diffractogram of NiPc Powder
  • Fig. 5.4.3: X-ray diffractogram of CoPc powder
  • Table 5.4.1: Standard (JCPDS) interplanar distances (hkl) withcorresponding Miller indices and 2
  • Table 5.4.2: Standard (JCPDS) interplanar distances (hkl) withcorresponding Miller indices and 2
  • Table 5.4.3. The observed interplanar distances (hkl) with corresponding2
  • 5.4.1 Effect of substrate temperature
  • Fig.5.4.4: X-ray diffractogram of CuPc thin film prepared at roomtemperature303K
  • Fig. 5.4.5: X-ray diffractogram of CuPc thin film prepared at substratetemperature363K
  • Fig.5.4.6 X-ray diffractogram of CuPc thin film prepared at substratetemperature 458K
  • Table 5.4.4 d, 2
  • Table 5.4.5: Variation of FWHM of prominent peak of CuPc thin filmsdeposited at different substrate temperatures.
  • Fig.5.4.7: X-ray diffractogram of NiPc thin film of thickness 400nmdeposited at room temperature (303K)
  • Fig.5.4.8 X-ray diffractogram of NiPc thin film prepared atsubstrate temperature363K
  • Fig.5.4.9: X-ray diffractogram of NiPc thin film prepared at substratetemperature 458K
  • Table 5.4.6: Variation of FWHM of prominent peak of NiPc thin films deposited at different substrate temperatures.
  • Fig.5.4.10: XRD of as deposited CoPc thin film deposited at 303K.
  • Fig. 5.4.11: XRD of CoPc thin film deposited at 363K
  • Fig.5.4.12: XRD of CoPc thin film deposited at 458K
  • Table: 5.4.7 Variation of FWHM of prominent peak of CoPc thin filmsdeposited at different substrate temperatures.
  • Table 5.4.8: Variation of FWHM of preferential orientation for asdeposited CuPc, NiPc and CoPc thin films.
  • Table 5.4.9: Variation of FWHM of preferential orientation for CuPc, NiPc and CoPc thin films deposited at substrate temperature363K.
  • Table 5.4.10: Variation of FWHM of preferential orientation for CuPc, NiPc and CoPc thin films deposited of at substratetemperature 458K.
  • 5. 5. Energy dispersive X-ray analysis (EDAX)
  • Fig.5.5.1: EDAX energy spectrum of vacuum evaporated CuPc thin film
  • Fig.5.5.2: EDAX energy spectrum of vacuum evaporated NiPc thin film
  • Fig.5.5.3: EDAX energy spectrum of vacuum evaporated CoPc thin film
  • Table: 5.5.1: EDAX quantitative results of CuPc thin film
  • 5. 6. CONCLUSION
  • References
  • 6. TOPOLOGICAL STUDIES ONCOPPER PHTHALOCYANINE, NICKEL PHTHALOCYANINEAND COBALT PHTHALOCYANINE THIN FILMS
  • 6.1 Introduction
  • 6.2 Theory
  • 6.3 Experiment
  • 6.4 Results and Discussion
  • 6.4.1 Dependence of substrate temperature
  • Fig.6.1: Scanning electron micrograph of copper phthalocyanine thin film deposited at room temperature 303K (x 9000)
  • Fig.6.2: Scanning electron micrograph of copper phthalocyanine thin film deposited at substrate temperature 363K (x 9000)
  • Fig. 6.3: Scanning electron micrograph of copper phthalocyanine thin film deposited at substrate temperature 458K (x 9000)
  • Table 6.1: Variation of grain size with substrate temperatures for CuPcthin film
  • Fig.6.4: The scanning electron micrograph of NiPc thin filmdeposited at room-temperature 303K (x 9000)
  • Fig.6.5: The scanning electron micrograph of NiPc thin filmdeposited at substrate temperature 363K (x 9000)
  • Fig.6.6: The scanning electron micrograph of NiPc thin filmdeposited at substrate temperature.458K (x 9000)
  • Table 6.2: Variation of grain size with substrate temperatures for NiPcthin films
  • Fig.6.7: Scanning electron micrograph of thin film of CoPc depositedat 303K (x 9000)
  • Fig.6.8: Scanning electron micrograph of CoPc thin film deposited at363K (x 9000)
  • Fig.6.9: Scanning electron micrograph of thin film of CoPc depositedat 458K (x 9000)
  • Table 6.3: Variation of grain size with substrate temperatures for CoPcthin film
  • Table 6.4: Grain sizes for CuPc, NiPc and CoPc thin films deposited at303, 363 and 458K-substrate temperatures.
  • 6.4. 2 Dependence of air annealing
  • Table 6. 5: Variation of grain size at different annealing temperatures forCuPc thin film
  • Fig.6.10: Scanning electron micrograph of CoPc thin film annealed at353K (x 9000)
  • Fig. 6.11: Scanning electron micrograph of CuPc thin film annealed at433K (x 9000)
  • Fig.6.12: Scanning electron micrograph of CuPc thin film annealed at433K (x 9000)
  • Fig.6.13: Scanning electron micrograph of CuPc thin film annealed at433K (x 1000)
  • Fig.6.14: Scanning electron micrograph of NiPc thin film annealed at353K (x 9000)
  • Fig.6.15: Scanning electron micrograph of NiPc thin film annealed at433K (x 9000)
  • Table 6.6 Variation of grain size at different annealing temperatures forNiPc thin films
  • Fig.6.16: Scanning electron micrograph of CoPc thin film annealed at353K (x 9000)
  • Fig.6.17: Scanning electron micrograph of CoPc thin film annealed at433K (x 9000)
  • Fig.6.18: Scanning electron micrograph of CoPc thin film annealed at433K (x 9000)
  • Fig. 6.19: Scanning electron micrograph of CoPc thin film annealed at433 K (x 500)
  • Table 6.7 Variation of grain size at different annealing temperatures forCoPc thin film
  • CONCLUSION
  • References
  • 7. SUMMARY AND CONCLUSION