• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 190
 
Full Screen

  • Title
  • DEDICATION
  • DECLARATION
  • CERTIFICATE
  • ACKNOWLEDGEMENT
  • ABSTRACT
  • Preface
  • Table of Contents
  • List of Tables
  • List of Figures
  • List of Appendices
  • 1. Introduction
  • 1.1 Introduction
  • 1.2 Superconductivity
  • 1.3 High Tc superconductor
  • 1.4 Diamagnetic properties of high Tc Superconductors
  • 1.4.1 Meissner effect
  • 1.4.2 Levitation properties
  • 1.5 Electromagnetic shielding
  • 1.6 Superconductor / polymer composites
  • 1.7 Polymers
  • 1.8 Copolymerization
  • 1.9 Polyethylene-A highly applicable material
  • Fig.l.3 [1.64]: Space-filling model of a polyethylene chain
  • 1.10 Classification of polyethylenes
  • 1.11 Linear Low Density Polyethylene (LLDPE)
  • 1.12 Bibliography
  • 1.13 Index
  • 2. Experimental techniques
  • 2.1 Introduction
  • 2.2 Preparation of the superconductor, YBCO
  • 2.3 Preparation of the LLDPE / superconductor composites
  • 2.4 Willy Mill
  • Fig. 2.1: Willy Mill
  • Fig.2.2: Willy Mill with housing open
  • 2.5 Density measurements
  • 2.6 X-ray diffraction analysis
  • Fig. 2.3 [2.10]: X-ray diffractometer
  • Fig.2.4 [2.10]: Rotating anode X-ray generator
  • 2.7 Thermal analysis
  • 2.7.1 Differential thermal analysis
  • 2.7.2 Differential scanning calorimetry (DSC)
  • 2.8 Polymer crystallinity
  • 2.9 Theory of crystallization kinetics
  • 2.10 Raman spectroscopy
  • Fig. 2.7 [2.21]: Raman spectrometer
  • 2.11 Electrical measurements
  • 2.11.1 Resistivity and critical temperature measurements Vander - Pauw method
  • 2.11.2 Sample holder for low temperature resistivity measurements
  • Fig. 2.9: Schematic diagram of Sample holder
  • Fig. 2.10 [2.23]: Experimental setup for dc resistivity measurement.
  • 2.12 Magnetic levitation measurements
  • 2.13 Magnetic susceptibility measurements
  • 2.14 Morphological studies
  • 2.14.1 Scanning electron microscopy (SEM)
  • Fig. 2.12 [2.25]: Scanning electron microscope
  • 2.14.2 Atomic force microscopy (AFM)
  • Fig.2.13 [2.33]: Atomic force microscope
  • Fig.2.14: Schematic diagram of AFM technique
  • Fig. 2.15: A block diagram showing operating principle of AFM
  • 2.15 Bibliography
  • 2.16 Index
  • 3. Electrical and Magnetic properties
  • 3.1 Introduction
  • 3.2 Percolation model
  • 3.3 Mechanism of PTCR effects
  • 3.4 Experimental details
  • 3.5 Results and discussion
  • 3.5.1 Electrical measurements
  • 3.5.2 Magnetic properties
  • 3.5.2 (i) Magnetic levitation measurements
  • 3.5.2 (ii) Magnetic susceptibility measurements
  • 3.6 Conclusions
  • 3.7 Bibliography
  • 3.8 Index
  • 4. Thermal, crystallization and structural studies.
  • 4.1 Introduction
  • 4.2 Experimental details
  • 4.3 Results and discussion
  • 4.3.1 Modulated differential scanning calorimetry (MDSC) studies
  • 4.3.1 (i) Melting behavior
  • 4.3.1 (ii) Crystallization behavior
  • 4.3.2 X-ray diffraction analysis
  • 4.3.3 Raman studies
  • 4.4 Conclusions
  • 4.5 Bibliography
  • 4.6 Index
  • 5. Morphology and Microstructure
  • 5.1 Introduction
  • 5.2 Experimental details
  • 5.3. Results and discussion
  • 5.3.1 Density measurements
  • 5.3.2 Atomic force microscopy (AFM) studies
  • Fig.5.2 (A) - (I): AFM images of 0, 20, 30, 40, 50, 60, 70, 80, and 100% superconductor samples.
  • 5.3.3 Scanning electron microscopy (SEMI) studies
  • Fig. 5.5 (A) - (G): SEM micrographs of composites containing 0, 20, 40, 50, 60, 80, and100 vai.% of Y- 123 filler in LLDPE matrix
  • 5.4 Conclusions
  • 5.5 Bibliography
  • 5.6 Index
  • 6. Conclusion and scope for further work
  • 6.1 Conclusion
  • 6.2 Scope for future work
  • APPENDIX 1 List of Publications
  • APPENDIX 2 Reprint of published paper