• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 260
 
Full Screen

  • TITLE
  • CERTIFICATE
  • DECLARATION
  • DEDICATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • ABBREVIATIONS
  • 1. INTRODUCTION AND REVIEW OF LITERATURE
  • INTRODUCTION
  • REVIEW OF LITERATURE
  • 1.1. THE HALLMARKS OF CANCER
  • Fig.1.1.Different acquired capabilities of cancer
  • 1.2. CELL CYCLE AND GROWTH OF CANCER CELLS
  • 1.3. METASTASIS AND CANCER
  • 1.4. MOLECULAR BASIS OF CANCER
  • 1.5. GROWTH FACTORS AND CANCER
  • 1.6. CARCINOGENESIS
  • 1.7. REACTIVE OXYGEN SPECIES AND CANCER
  • Fig. 1.2. Different ways in which singlet oxygen can be generated
  • 1.8. CANCER THERAPY
  • 1.9. PLANT POLYPHENOLS AS A CLASS OF NATURAL THERAPEUTIC DRUGS.
  • 1.10. PRODUCTION OF ANTI NEOPLASTIC SECONDARY METABOLITES THROUGH PLANT BIOTECHNOLOGY
  • Fig. 1.5. Simplified model for network of secondary metabolite biosynthesis; E = Enzyme, S = Product
  • Fig. 1.6. Compartmentlization of alkaloid biosynthesis in Catharanthus roseus; all steps are shown as occuring in a single cell.
  • 2. MATERIALS AND METHODS
  • 2.1. MATERIALS
  • 2.2. METHODS
  • 2.3. Cytotoxicity assays
  • 2.4. Topoisomerase I and II inhibition assay
  • 2.5. Propagation of tumour cell lines
  • 2.6. Determination of tumour reducing activity of plant products
  • 2.7. Determination of in vitro antioxidant activity
  • 2.8. Estimation of protein
  • 2.9. Estimation of tissue glutathione (GSH)
  • 2.10. Estimation of serum glutamate -pyruvate transaminase (GPT) activity
  • 2.11. Estimation of Alkaline phosphatase (ALP) activity
  • 2.12. Histopathology
  • 2.13. Statistical analysis
  • 3. ISOLATION AND QUANTIFICATION OF CAMPTOTHECIN FROM OPHIORRHIZA RUGOSA VAR.DECUMBENS
  • 3.1. INTRODUCTION
  • Plate No.1. Ophiorrhiza rugosa var. decumbens (Deb and Mondel)
  • 3.2. MATERIALS AND METHODS
  • Fig 3.1. Schematic representation for the isolation of CPT from plant parts of O.rugosa var. decumbens
  • Fig.3.2.a. UV Visible absorption spectra of standard CPT Fig.3.2.b. UV Visible absorption spectra of isolated CPT
  • Fig.3.3.a. to Fig.3.3.c.
  • Fig.3.3.d. to Fig.3.3.i
  • Fig.3.3.j. to Fig.3.3.n.
  • Fig. 3.4.a. Mass spectrum of standard CPT
  • Fig. 3.4.b. Mass spectrum of isolated CPT
  • Fig. 3.5.a. NMR spectrum of standard CPT
  • Fig. 3.5.b. NMR spectrum of isolated CPT
  • Fig. 3.6.a. IR spectrum of standard CPT
  • Fig. 3.6.b. IR spectrum of isolated CPT
  • Fig. 3.7. A comaprison of cytotoxicity between isolated and standard camptothecin
  • Fig. 3.8. Schematic representation for the isolation of 10 - hydroxy CPT from plant parts of O.rugosa var. decumbens
  • Fig.3.9.a; b. Mass spectrum of 10-hydroxy CPT isolated from O.rugosa var.decumbens,
  • Fig.3.10.a. 1H NMR spectrum of anthraquinone isolated from O.rugosa var.decumbens,
  • 3.3. RESULTS AND DISCUSSION
  • 4. BIOTECHNOLOGICAL PRODUCTION OF CAMPTOTHECIN - A FEASIBLE APPROACH
  • 4.1. INTRODUCTION
  • 4.2. MATERIALS AND METHODS
  • Fig 4.1 a Camptothecin extraction from callus of O.rugosa var. decumbens
  • 4.3. RESULTS AND DISCUSSION
  • Plate No.2. A. Emergence of multiple shoot from leaf explants
  • Plate No.3. A- In Vitro grown callus from O.rugosa var. decumbens
  • Plate N0.4. - Agrobacerium mediated hairy root induction;
  • 5. GOSSYPIN-A BIOACTIVE SECONDARY METABOLITE FROM HIBISCUS FURCATUS
  • 5.1. INTRODUCTION
  • 5.2. MATERIALS AND METHODS
  • 5.2.1. Plant Material
  • 5.2.2. Isolation of gossypin (Fig. 5.1a)
  • 5.2.3. Determination of Melting Point
  • 5.2.4. HPLC analysis and quantification
  • 5.2.4.1. Standardization of HPLC for the estimation of Gossypin
  • 5.2.5. IR Spectra
  • 5.2.6. Electron Spray Mass spectrometry (ESMS)
  • 5.2.7. 1H-nuclear magnetic resonance
  • 5.2.8. Tissue culture studies of Hibiscusfurcahts
  • 5.2.8.1. Culture environment
  • 5.2.8.2. Culture initiation and callus culture establishment
  • 5.2.8.3. Callus growth measurement
  • 5.3. RESULTS AND DISCUSSION
  • Plate No. 5. A & B- Habitat view of Hibiscusfurcatus
  • 1.TOXICITY STUDIES OF GOSSYPIN
  • 6. PHARMACOLOGICAL ACTIVITY OF GOSSYPIN
  • 6.1.1. INTRODUCTION
  • 6.1.2. MATERIALS AND METHODS
  • 6.1.2.1. Animals
  • 6.1.2.2. Acute toxicity study
  • 6.1.3. RESULTS AND DISCUSSION
  • Plate No.6.
  • 2.ANTIOXIDANT AND HEPATOPROTECTIVE ACTIVITY OF GOSSYPIN
  • 6.2.1. iNTRODUCTION
  • 6.2.2. MATERIALS AND METHODS
  • 6.2.2.1. Animals
  • 6.2.2.2. Inhibition of superoxide radical scavenging activity
  • 6.2.2.3. Hydroxyl radical scavenging activity
  • 6.2.2.4. Inhibition of lipid peroxide formation
  • 6.2.2.5. Nitric oxide radical scavenging activity
  • 6.2.3. RESULTS AND DISCUSSION
  • Plate No.7. - Scctions ui liver in CCla induced acute hepatotoxicity study
  • 3.ANTI TUMOUR AND ANTI CARCINOGENICACTIVITY OF GOSSYPIN
  • 6.3.1. INTRODUCTION
  • 6.3.2. MATERIALS AND METHODS
  • 6.3.3. RESULTS AND DISCUSSION
  • Plate No.8.
  • Plate No.9.
  • ANTI INFLAMMATORY AND GASTRIC CYTOPROTECTIVE ACTIVITY
  • 6.4.1. INTRODUCTION
  • 6.4.2. MATERIALS AND METHODS
  • 6.4.2.1. Ethanol induced gastric lesions
  • 6.4.2.2. Aspirin induced gastric ulcer
  • 6.4.2.3. Anti-inflammatory study
  • 6.4.2.4. Carragenan induced paw oedema
  • 6.4.2.5. Formalin induced paw oedema
  • 6.4.2.6. Dextran induced paw oedema
  • 6.4.2.7. Croton oil induced skin oedema
  • 6.4.3. RESULTS AND DISCUSSION
  • Plate No. 10.
  • Plate No.11.
  • 7. SUMMARY AND CONCLUSION
  • BIBILIOGRAPHY
  • Publications