HOME
Search & Results
Full Text
Thesis Details
Page:
342
Full Screen
TITLE
DEDICATION
CERTIFICATE-1
CERTIFICATE-2
CERTIFICATE 3
DECLARATION
ACKNOWLEDGEMENT
CONTENTS
Preface
GLOSSARY OF TERMS
1. Introduction
1.1. Definition of composites
1.2. Constituent Materials
1.2.1. Matrices
1.2.1.1. Thermoplastic polymer matrices
1.2.1.2. Thermoset polymer matrices
1.2.2. Reinforcements
1.3. Natural fibres
1.4. Types of natural fibres
1.4.1. Bast fibres
1.4.2. Leaf fibres
1.4.3. Seed fibres
1.5. Microstructure of natural cellulose fibres
Fig. 7.7.Structural constitution of natural vegetable fibre cell
Fig.1.3. (a) Schematic drawing of the cross section of a piece of sisal leaf
Fig.1. 3. (b) Schematic drawing of the inter construction of a bunched sisal fibre
1.6. Chemical composition of natural fibres
1.7. Major issues of natural fibres
1.7.1. Moisture absorption of fibres
1.7.2. Thermal stability of natural fibres
1.7.3. Biodegradation and photodegradation of natural fibres.
1.8. Fibre-matrix interface and interfacial modifications
Fig.1.8. Triazine derivative of cellulose fibre
1.9. Fracture mechanism of composite failure
1.10. Green composites
Fig.7.17. Typical life cycle of green composites
1.11. Hybrid composites
1.12. Cellulose microfibrils reinforced composites
Fig.1.22. Morphology of the cellulose microfibrils before and after silylation
1.13. Scope and objectives of the present work
References
2. Materials and Experimental
2.1. Materials
2.1.1. Banana fibres
2.1.2. Glass fibres
2.1.3. Phenol formaldehyde resin
2.1.4. Chemicals:
2.2. Fibre modifications
2.3. Preparation of composites
2.4. Scanning electron microscopy
2.5. Thermo gravimetric analysis -
2.6. Mechanical tests
2.7. Dynamic mechanical analysis
2.8. Water absorption studies
2.9. Aging studies
2.10. Electrical property evaluation
2.11. Extraction of microfibrils and preparation of microcomposites.
References
3. Reinforcement with Banana and Glass Fibres: Mechanical Properties
ABSTRACT
3.1. Adhesion between fibre and matrix
3.2. Tensile properties
3.2.1. Intrinsic properties of fibres
3.2.2. Effect of fibre length
3.2.3. Effect of fibre loading
3.3. Flexural behavior
3.4. Impact behavior
3.5. Theoretical modeling
References
4. Fibre Surface Treatments
4.1. Physical changes: SEM observations
Fig.4.1 (a-c) Scanning electron micrographs of (a) untreated (b) mercerized and (c) acetylated banana fibre
Fig.4.I. (d-f) Scanning electron micrographs of (d) heat treated (e) latex treated and (f) amino silane treated
Fig.4.7. (g) Scanning electron micrograph of vinyl silane treated banana fibre
4.2. Effect of treatments on tensile properties of banana fibre.
4.3. Mechanical properties of composites
4.3.1. Tensile properties
Fig.4.8 (a-g) Scanning electron micrographs of the tensile fracture surfaces of untreated and treated banana fibre reinforced phenol formaldehyde composites
4.3.2. Flexural properties
4.3.3. Impact properties
References
5. Hybrid Fibre Reinforcement with Banana and Glass Fibres.
5.1. Effect of hybridization on mechanical properties
5.1.1. Tensile properties
Fig.5.3 Scanning electron micrographs of tensile fracture surfaces of (a) glassPF and (b) banana/PF composites showing a stronginterface in banana/PF system
5.1.2. Flexural properties
5.1.3. Impact properties
5.2. Effect of banana glass layering
5.2.1. Tensile properties
Fig.5.8. Scanning electron micrographs of tensile fracture surfaces of banana/glass hybrid PF composites
5.2.2. Flexural properties
5.2.3 Impact properties
5.3. Theoretical modeling
References
6. Dynamic Mechanical Analysis
6.1. Banana fibre reinforced PF composites
6.2. Hybrid composites
6.2.1. Effect of fibre loading
6.2.2. Effect of hybrid layering pattern
6.3. Effect of fibre surface modifications
6.4. Activation energy for glass transition
6.5. Theoretical modeling
6.5.1. Storage modulus
6.5.2. Theoretical prediction of tan δ values
References
7. Thermal Stability and Degradation
7.1. Thermal degradation of fibres
7.2. Phenol formaldehyde resin
7.3. Banana / PF composites
7.4. Effect of fibre treatment
References
8. Water Sorption Characteristics
8.1. Water uptake of composites
8.1.1. Banana fibre reinforced PF composites
Fig.8.3. Scanning electron micrograph of cross section of a banana fibre.
8.1.2. Glass fibre reinforced PF composites
8.1.3. Effect of surface modification of banana fibre.
8.1.4 Effect of hybridization with glass fibre
8.1.5. Effect of hybrid layering pattern
8.2. Kinetics of water sorption
8.3. Transport coefficients
References
9. Electrical Properties
9.1. Dielectric constant (ε)
9.1.1. Banana fibre reinforced PF composites
9.1.2. Effect of chemical treatment
9.1.3. Effect of hybridization
9.1.4. Effect of hybrid layering pattern
9.2. Volume resistivity
9.2.1. Banana fibre reinforced PF composites
9.2.2. Effect of chemical treatment
9.2.3. Effect of hybridization
9.2.4. Effect of layering pattern
9.3. Dielectric loss factor
References
10. Environmental Durability of Composites
10.1. Banana / glass / hybrid composites
10.1.1. Percentage weight change:
10.1.2. Tensile properties
10.2. Effect of banana fibre modification
10.2.1. Percentage weight change
10.2.2. Tensile properties
10.3. Soil burial and outdoor weathering studies
References
11. Microfibrils and Reinforcement
11.1. Mechanical properties of microfibril / PF composites
Fig.11.2. Scanning electron micrographs of cellulose microfibrils ( (a) and (b) ) and a rnacrofibre (c)
Fig.11.4. Tensile fracture surface of microfibril/PF composites (a) 7%, (b) 13% and (c) I8 %
11.2. Dynamic mechanical properties
11.3. Thermal degradation
References
12. Conclusions & Future Scope of Work
CURRICULUM VITAE
PUBLICATIONS IN INTERNATIONAL JOURNALS
Papers Presented In National and lnternational Seminars