HOME
Search & Results
Full Text
Thesis Details
Page:
198
Full Screen
Title
CERTIFICATE
DECLARATION
ACKNOWLEDGEMENT
DEDICATION
CONTENTS
1 Introduction and study
1.1 Non-Gaussian time series modeling-a review
1.2 Summary of the present study
1.3 Preliminary concepts
1.3.1 Infinite divisibility
1.3.2 Self decomposability
1.3.3 Stable distributions on R
1.3.4 Geometric Infinite divisibility
Theorem 1.3.1
Theorem 1.3.2
Theorem 1.3.3 (Aalogue of Levy-Khintchine representation)
Theorem 1.3.4 (Analogue of Levy-Khinchin representation)
Theorem I.3.5 (Analogue of Kolmogorovs representation)
1.3.5 Bernstien function
Theorem 1.3.6
1.3.6 Geometric stable distributions
Definition
Parameterizations of geometric stable laws
Spcial cases
1 Strictly GS laws
2 Linnik distribution
3 Symmetric Linnik distribution
1.3.7 Geometrically strictly stable distributions
1.3.8 Mittag-Leffler distribution
1.3.9 α- Laplace distribution
1.3.10 Geometric exponential distribution
1.3.11 Generalized laplacian distribution
1.3.12 Stationary rime series
1.3.13 Time reversibility
1.3.14 Autoregressive models
2 Geometrical exponential distribution and applications
2.1 Introduction
2.2 Geometric exponential distribution
Definition 2.2.1
Remark 2.2.1
Remark 2.2.2
Theorem 2.2.1
2.3 Geometric gamma distribution
Theorem 2.3.1
Remark 2.3.1
2.4 Application of GED (λ) and GGD (λ, k) distributions in first order autoregressive time series modeling
2.4.1 The distribution of sums of stationary intervals
2.5 Generalization to a kth order autoregressive process
2.6 Geometric exponential distribution and subordinated process
Definition 2.6.1
Theorem 2.6.1
2.7 Graphs of density function and cumulative distribution function
3 Geometric Mittag-Leffler distribution and processes
3.1 Introduction
3.2 Geometric Mittag-Leffler distributions
Definition 3.2.1
Definition 3.2.2
Theorem 3.2.1
3.3 Geornetrir semi Mittag-Leffler distributions
Definition 3.3.1
3.4 Autoregressive models in geometric Mittag-Leffler marginals
Definition 3.4.1
Theorem 3.4.1
3.5 Joint distributions for (Xn, Xn-1)
3.6 Sum of stationary intervals
Remark 3.6.1
3.7 Characterization of geometric Mittag-Leffler distribution
Theorem 3.7.1
3.8 Generalisation to a kth order autoregressive process
3.9 Applications
4 Geometric α-laplace distribution and applications
4.1 Introduction
4.2 Semi α-Laplace distribution
4.3 Geometric semi α-Laplace distribution
Definition 4.3.1
Definition 4.3.2
Theorem 1.3.1
4.4 AR (1) model with geometric semi α-Laplace marginals
Theorem 3.4.1
4.4.1 The Joint distribution of (Xn, xn-1)
4.5 Geometric α-Laplace distribution
Definition 4.5.1
Definition 4.5.2
Theorem 4.5.1
Theorem 4.5.2
4.5.1 The Joint distribution of Xn and Xn-1
4.6 Geometric Laplace distribution
Definition 4.6.1
Definition 4.6.2
Theorem 4.6.1
Theorem 4.6.2
4.6.1 The joint distribution for (Xn, Xn-1)
4.7 Generalization to a kth order autoregressive process
4.8 Applications
5 Autoregressive processes with tailed marginals
5.1 Introduction
5.2 Exponential tailed distributions
Result 5.2.1
5.3 Geometric exponential tailed distribution
5.4 Geometric gamma tailed distribution
5.5 Geometric Mittag - Leffler tailed distribution
5.6 Geometric semi Mittag-Leffler tailed distribution
5.7 Geometric semi α-Laplace tailed distribution
Definition 5.7.1
Definition 5.7.2
Definition 5.7.3
5.8 Autoregressive models with tailed marginal distributions
5.8.1 Geometric exponential tailed autoregressive processes
5.8.2 Geometric gamma tailed autoregressive process
Theorem 5.8.1
5.8.3. Geometric Mittag-Leffler tailed process
Theorem 5.8.2
5.8.4. Geometric semi α-Laplace tailed first order autoregressive process
Theorem 5.8.3
References