• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 319
 
Full Screen

  • Title
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • Preface
  • CONTENTS
  • Symbols and Abbreviations
  • I. Introduction
  • I.1. Rubber plantation in India
  • I.1.1. Brief History
  • I.1.2. Present Status
  • I.2. Ancillary products from rubber plantation
  • I.2.1. Rubber Wood
  • I.2.2. Rubber Honey
  • I.2.3. Rubber Seed
  • I.3. Rubber seed cake
  • I.4. Rubber seed oil
  • I.4.1. Extraction of Oil
  • Fig. 1.1. Oil expeller
  • I.4.2. Refining and Bleaching of RSO
  • I.4.3. Physical Properties and Chemical Composition of Rubber Seed Oil
  • I.4.4. Industrial Applications of Rubber Seed Oil
  • I.4.5. Chemical Modification of Rubber Seed Oil
  • I.5. Vegetable oil in industrial application / polymer processing
  • I.5.1. Definition and Classification of Oil
  • I.5.2. Type of Vegetable Oil
  • I.5.3. Structure and Composition
  • I.5.4. General Characteristics of Vegetable Oils
  • I.5.5. Vegetable Oils of Commercial lmportance
  • I.5.6. Chemical Modification of Vegetable Oils
  • I.5.7. Uses of Vegetable Oil
  • I.5.8. Limitations of Vegetable Oils
  • I.6. Plasticizers and softners
  • I.6.1. Plasticizers
  • I.6.2. Use of Plasticizers
  • I.6.3. Theories of Plasticization
  • I.6.4. Requirements for a Plasticizer
  • I.6.5. Classification
  • I.7. Polyvinyl Chloride: Its Plasticization and Stabilization
  • I.7.1. Manufacture of PVC
  • I.7.2. Physical Properties
  • I.7.3. Additives for PVC
  • I.8. Peptizers
  • I.9. Latex Compounding
  • I.9.1. Compounding Ingredients
  • I.10. Role of coupling agents in silica filled compounds
  • I.10.1. Coupling Agent
  • I.10.2. Reinforcement by Silica Filler
  • I.10.3. Silanisation of Silica
  • I.10.4. Rubber to Rubber and Filler to Rubber Crosslinking
  • I.10.5. Carbon Black versus Silica
  • I.10.6. Silica Development Activities
  • I.10.7. Silane Coupling and Mixing/processing Options
  • Scope of the Work
  • Objectives of the Work
  • References
  • II Experimental techniques
  • II.1. Materials used
  • II.1.1. Concentrated Natural Rubber Latex
  • II.1.2. Styrene-butadiene latex
  • II.1.3. Polyvinyl Chloride Resin
  • II.1.4. Polychloroprene
  • II.1.5. Acrylonitrile-butadiene Rubber
  • II.1.6. Technically Specified Natural Rubber (ISNR 5)
  • II.1.7. Rubber Seed Oil (RSO)
  • II.1.8. Epoxidised Rubber Seed Oil (ERSO)
  • II.1.9. Fillers
  • II.2. Rubber chemicals
  • II.2.1. Zinc oxide
  • II.2.2. Sterric acid
  • II.2.3. Sulphur
  • II.2.4. Diethylene glycol (DEG)
  • II.2.5. Magnesium oxide (MgO)
  • II.2.6. Accelerators
  • II.2.7. Antioxidants
  • II.2.8. Plasticizers
  • II.2.9. Special Chemicals
  • II.3. Experimental techniques
  • II.3.1. Composition Analysis of RSO Using GPC
  • II.3.2. Preparation of Epoxidised Rubber Seed Oil
  • II.3.3. Preparation of 20% Rubber Seed Oil/Potassium Oleate Soap
  • II.3.4. Preparation of Copper Oleate from Oleic Acid and Mixture of Copper Salts from Rubber Seed oil
  • II.3.5. Preparation of aqueous dispersions
  • II.3.6. Preparation of Emulsions
  • II.4. Analysis of NR latex for quality parameters
  • II.4.1. Dry Rubber Contsnt (DRC)
  • II.4.2. Total Sdids Content (TSC)
  • II.4.3. Mechanlccrl Stability Time (MST)
  • II.4.4. Ammonir Content (Alkalinity)
  • II.4.5. Volrtilo FIilty Acid (VFA) Number
  • II.4.6. Zinc oxide Stability Time (ZST)
  • II.4.7. Potassium Hydroxide (KOH) Number
  • II.4.8. Coagulum Content
  • II.5. Testing of rubber seed oil
  • II.5.1. Specific Gravity
  • II.5.2. Refractive index
  • II.5.3. Acid Value (Free Fatty Acids)
  • II.5.5. Iodine Value
  • II.5.6. Un-saponifiable Matter
  • II.5.7. Titre
  • II.5.8. Determination of Oxirane Percentage
  • II.6. Raw rubber tests
  • I.6.1. Composite Sample preparation
  • II.6.2. Viscosity of Rubber Solutions
  • Fig. II.4. Haake Viscotester
  • II.7. Preparation and testing of polyvinyl chloride compounds
  • II.7.1. Preparation of PVC Compounds
  • Fig. II.5. Haake Rheocord 90
  • II.7.2. Dynamic Heat Stability
  • II.7.3. Tensile Strength, Elongation at Break and Modulus
  • II.7.4. Dynamic Mechanical Thermal Analyser
  • II.7.5. Static Thermal Stability of PVC Compounds
  • II.8. Limiting oxygen index
  • II.9. Production of latex foam
  • II.10. Preparation of dry rubber compounds
  • II.11. Testing of unvulcanized compounds
  • II.11.1. Time of Optimum Cure
  • II.11.2. Cure Rate Index
  • II.11.3. Determination of Mooney Scorch Time
  • II.12. Moulding of test samples
  • II.12.1. Test Specimen Preparation
  • II.13. Testing for vulcanizate properties
  • II.13.1. Modulus, Tensile Strength and Elongation at Break
  • II.13.2. Tear Strength
  • II.13.3. Hardness
  • II.13.4. Heat Build-up
  • II.13.5. Abrasion Resistance
  • II.13.6. Rebound Resilience
  • II.13.7. Compression Set
  • II.13.8. Twllng for Fungal Growth
  • II.13.9. Determination of Crosslinking Density / Volume Fraction of Rubber
  • II.14. Measurement of resistance to degradation
  • II.14.1. Measurement of Oil Resistance
  • II.14.2. Leaching Loss
  • II.14.3. Volatilition Loss
  • II.14.4. Hot Air Ageing
  • II.15. Testing of latex foam
  • II.15.1. Hardness of Foam
  • II.15.2. Flexing Test
  • II.15.3. Compression Set
  • II.15.4. Whole Sample Compression
  • II.15.5. Ageing
  • References
  • III. Studies on epoxidised rubber seed oil as a plastic acrylonitrile butadiene rubber
  • III.1. Results and discussion
  • III.1.1. Effect of ERSO on cure characteristics of NBR compounds
  • III.1.2 Effect of ERSO on physical and mechanical properties of NBR vulcanizate
  • III 1 3 Effect of ERSO on ageing resistance of NBR vulcanizate
  • III 1 4 Effect of ERSO on swelling and leaching behaviour of NBR vulcanizate
  • III.1.5 Effect of ERSO on volatilization loss and thermal stability of NBR vulcanizate
  • III.2. Conclusion
  • References
  • IV. Use of rubber seed oil in polychioroprene rubber comps
  • IV. 1. Compounding and curing of polychloroprene rubber
  • IV. 2. Chemical mechanism of cross linking of polychloroprene rubber
  • IV.3. Results and discussion
  • IV.3.1. Effect of RSO on properties of the gum compounds
  • IV.3.2. Effect of RSO on properties of GPF black filled compounds
  • IV.4. Conclusion
  • References
  • V. Studies on use of rubber seed oil soap in natural rut blend of natural rubber and styrene butadiene rubber lal production
  • V.1. Results and discussions
  • V.1.1. Effect of soap on time for expansion of latex compound
  • V.1.2. Effect of soap on hardness of latex foam
  • V.1.3. Effect of soap on compression set and whole sample compression of latex foam
  • V.1.4. Effect of soap on flexing resistance of latex foam
  • V.1.5. Effect of soap on ageing resistance latex foam
  • V.1.6. Effect of soap on mould shrinkage of latex foam
  • V.1.7. Effect of soap on structure of latex foam
  • V.2. Conclusion
  • Fig. V.1. Foamed latex serum interfaces
  • Fig. V.2. Photograph of POE
  • Fig. V.3. Photograph of RSOS
  • Fig. V.4. Photomicrograph of foam sample POE
  • Fig. V.5. Photomicrograph of foam sample RSOS
  • References
  • VI. Studies on copper salt of fatty acids from rubber seed oil as pepticizer for estimation of dirt content in technically specified natural rubber
  • VI.1 Results and discussion
  • VI.2 Conclusion
  • References
  • VII. Uses of epoxidised rubber seed oil as a coupling agent and plasticizer in silica filled natural rubber compounds
  • VII.1. Results and discussion
  • Vll 1.1 Effect of ERSO cure characteristics of silica filled NR compounds
  • VII 1.2 Effect of ERSO on physical and mechanical properties of silica filled NR vulcanizates
  • VII 2 Conclusion
  • References
  • VIII. Studies on epoxidised rubber seed oil as a secondary plasticizer / stabilizer for polyvinyl chloride
  • VIII.1. Results and discussion
  • VIII 1.1. Effect of ERSO as a secondary plasticizer in polyvinyl chloride
  • VIII.1.2. Effect of ERSO as a heat stabilizer in polyvinyl chloride
  • VIII 2. Conclusion
  • References
  • Summary and conclusion
  • List of Publications