• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 360
 
Full Screen

  • Title
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • GLOSSARY OF TERMS
  • CONTENTS
  • Preface
  • 1 General Introduction
  • 1.1 Introductory remarks
  • 1.2 Classification of composites
  • 1.2.1 Particulate reinforcement:
  • 1.2.2 Fibrous reinforcement
  • 1.2.3 Laminates
  • 1.2.4 Hybrid composites
  • 1.3 Component materials
  • 1.3.1 Fibres
  • (a) Animal fibres
  • (i) Silk fibres
  • (ii) Hair fibres
  • (iii) Wool fibres
  • (iv) Fur fibres
  • (b) Vegetable fibres
  • (i) Seedfibres
  • (ii) Bastfibres
  • (iii) Vascrrlar (grass-stenr) fibres
  • (iv) Fruit fibres
  • (c) Mineral fibres
  • (i) Glass fibres
  • (ii) Ceramic fibres
  • (iii) Asbestosfibres
  • (d) Synthetic fibres
  • (i) Rayons
  • (ii) Organic synthetic fibres
  • (iii) Carbon and graphite fibres
  • 1.3.2 Matrices
  • Polymers
  • (i) Structure of polymers
  • (a) Plastics
  • (b) Rubbers
  • 1.4 Fibre reinforced rubber composites
  • 1.4.1 Cellulose fibre reinforced rubber composites
  • 1.4.2 Glass fibre reinforced composites
  • 1.4.3 Asbestos fibre reinforced composites
  • 1.4.4 Miscellaneous fibre reinforced composites
  • 1.5 Factors affecting the properties of the composite
  • 1.5.1 Mixing of rubber compounds
  • 1.5.2 Dispersion of short fibres
  • 1.5.3 Fibre breakage
  • 1.5.4 Critical fibre length
  • 1.6 Fibre orientation
  • 1.6.1 Effect of flow behaviour
  • 1.6.2 Determination of fibre orientation
  • 1.6.3 Fibre orientation distribution
  • 1.7 Fibre-matrix adhesion
  • 1.7.1 Bonding at the interface
  • (a) Mechanical bonding
  • (b) Chemical bonding at the interface
  • 1.7.2 Mechanism of dry bonding system
  • 1.7.3 Fibre treatment
  • 7.7.4 Determination of adhesion level and optimisation
  • 1.8 Theories of adhesion
  • 1.8.7 Mechanical theory
  • 1.8.2 Adsorption theory
  • 1.8.3 Diffusion theory
  • 1.8.4 Electrostatic theory
  • 1.9 Interface modification
  • 1.9.1 Surface treatment of polymers
  • (a) Chromic acid treatment
  • (b) Corona discharge treatment
  • (c) UV radiation
  • (d) Plasma treatment
  • 1.9.2 Surface treatment of fillers/fibres
  • (a) Physical methods
  • (b) Chemical methods
  • 1.10 Measurement of interfacial strength
  • 1.10.1 Single fibre tests
  • 1.10.2 Three point bend tests
  • 1.11 Interface characterisation
  • 1.12 Properties of short fibre composites
  • 1.12.1 Modulus and elongation at break
  • 1.12.2 Tensile strength
  • 1.12.3 Tear strength
  • 1.12.4 Creep
  • 1.12.5 Fatigue properties
  • 1.13 Applications of composite materials
  • 1.14 Scope of the present work and objectives
  • 1.15 References
  • 2 Materials and Methods
  • 2.1 Materials used
  • 2.1.1 Styrene-butadiene rubber
  • 2.1.2 Sisal fibre
  • 2.1.3 Rubber chemicals
  • 2.1.4 Special chemicals
  • 2.1.5 Other chemicals
  • 2.1.6 Solvents
  • 2.2 Surface modification of fibres
  • 2.2.1 Pre-treatment of fibres
  • 2.2.2 Methods of chemical modification
  • 2.2.3 Incorporation of dry bonding system
  • 2.3 Characterisation of fibre and composites
  • 2.3.1 Infrared spectroscopy
  • 2.3.2 Scanning electron microscopy
  • 2.3.3 Optical microscopy
  • 2.4 Preparation of composites
  • 2.4.1 Fibre preparation
  • 2.4.2 Compounding
  • 2.4.3 Vulcanization
  • 2.4.4 Fibre breakage and fibre length distribution
  • 2.4.5 Time of optimum cure
  • 2.5 Analysis of composite properties
  • 2.5.1 Physical and mechanical analysis
  • 2.5.2 Melt flow studies
  • 2.5.3 Diffusion and transport phenomena
  • 2.5.4 Analysis of electrical properties
  • 2.5.5 Dynamic mechanical thermal analysis (0MTA)
  • 2.5.6 Thermal properties
  • 2.6 References
  • 3 Mechanical and Processing Behaviour
  • 3.1 Introduction
  • 3.2 Results and discussion
  • 3.2.1 Fibre breakage
  • 3.2.2 Effect of fibre length
  • 3.2.3 Fibre orientation
  • 3.2.4 Effect of fibre loading
  • 3.2.5 Processing characteristics
  • 3.2.6 Anisotropic swelling studies
  • 3.2.7 Rubber-fibre interactions
  • 3.3 References
  • 4 Surface Modification and Role of Bonding Agent
  • 4.1 Introduction
  • 4.2 Results and discussion
  • 4.2.1 Effect of pre-treatments on sisal fibres
  • 4.2.2 Effect of chemical modification on interfacial adhesion
  • 4.2.3 Efficiency of all chemical treatments on mechanical properties
  • 4.2.4 Effecf of the addition of bonding agent
  • 4.2.5 Efficiency of different chemical treatments and bonding agent
  • 4.2.6 Anisotropic swelling studies
  • 4.2.7 Morphology due to swelling
  • 4.3 References
  • 5 Rheological and Extrusion Characteristics
  • 5.1 Introduction
  • 5.2 Results and discussion
  • 5.2.1 Fibre breakage
  • 5.2.2 Effect of fibre length
  • 5.2.3 Effect of shear stress and fibre loading on melt viscosity
  • 5.2.4 Effect of chemical modification of fibres
  • 5.2.5 Viscosity of chemically modified composites
  • 5.2.6 Effect of temperature
  • 5.2.7 Relative viscosity
  • 5.2.8 Flow behaviour index (FBI)
  • 5.2.9 Die swell and extrudate distortion
  • 5.2.10 SEM studies on extrudate morphology
  • 5.2.11 Theoretical modelling
  • 5.3 References
  • 6 Analysis of Interface Adhesion by Transport Studies
  • 6.1 Introduction
  • 6.2 Results and discussion
  • 6.2.1 Effect of transport on rubbers
  • 6.2.2 Effect of fibres on swelling behaviour of composites
  • 6.2.3 Effect of fibre orientation
  • 6.2.4 Effect of fibre loading
  • 6.2.5 Effect of bonding agent
  • 6.2.6 Variations in dimensions
  • 6.3 References
  • 7 Dielectric Properties
  • 7.1 Introduction
  • 7.2 Results and discussion
  • 7.2.1 Dielectric Constant
  • 7.2.2 Volume resistivity
  • 7.2.3 Dependence of electrical conductivity on fibre content
  • 7.2.4 Dissipation factor
  • 7.3 Effect of fibre concentration
  • 7.4 References
  • 8 Dynamic Mechanical Thermal Analysis
  • 8.1 Introduction
  • 8.2 Results and discussion
  • 8.2.1 Effect of fibre length on dynamic properties
  • 8.2.2 Effect of fibre loading
  • 8.2.3 Effect of chemical modification of fibres and bonding agent
  • 8.2.4 Effect of orientation of fibres
  • 8.2.5 Effect of frequency on the visco-elastic properties
  • 8.3 References
  • 9 Thermal Analysis and Kinetics of Degradation
  • 9.1 Introduction
  • 9.2 Results and discussion
  • 9.2.1 Thermogravimetric Analysis
  • 9.2-2 Thermal decomposition as a function of fibre loading
  • 9.2.3 Effect of chemical treatment 8 bonding agent
  • 9.2.4 Kinetic parameters from thermal degradation
  • 9.2.5 DSC studies
  • 9.3 References
  • 10 Summary and Conclusion
  • Future Outlook
  • Commercial exploitation
  • Particulate fibre filled composites
  • Hybrid composites
  • APPENDICES
  • List of publications from this work
  • Papers presented in Nationalllnternational Conferences
  • Curriculum Vitae
  • Reprints of Published Papers