• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 290
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • PREFACE
  • LIST OF PUBLICATIONS
  • 1. INTRODUCTION TO THE EARTHS UPPER ATMOSPHERE - IONOSPHERE
  • 1.1. introduction
  • 1.2. Ionosphere
  • 1.3. Equatorial ionosphere
  • 1.4 Geomagnetic S4 variations
  • l.5. Dynamo theory
  • 1.6. Electrical conductivity of the ionosphere
  • 1.6. I. Layer conductivities in the ionosphere
  • I.7. Equatorial Electrojet (EEJ) and Counter electrojet (CEJ)
  • 1.8 Plasma instabilities ill the Equatorial Electrojet region
  • I.8.1. Equatorial Electrojet irregularities
  • 1.8.2. Two-stream (Farley-Buneman) instability
  • 1.8.3. Gradient drift (Rayleigh-Taylor) instability
  • 1.9. Equatorial Sporadic F (Esq) layers
  • 1.10. Equatorial Spread F
  • 1.11. F region dynamo
  • 1.12. Dynamic and Electrodynamic effects
  • I.13. Present study
  • 2. EXPERIMENTAL TECHNIQUES
  • 2.1. Introduction
  • 2.2. Principle of Backscatter radar
  • 2.2.1. Principle of coherent scattering
  • 2.3. VHF hack scatter radar at Thumba
  • 2.3.1. Height resolution of the radar
  • 2.4. Radar specifications
  • 2.5. VHF backscatter radar data analysis
  • 2.6. Ionosonde
  • 2.6.1. Ionosonde principle
  • 2.6.2. Digital Ionosonde
  • 2.6.3. System description
  • 2.6.4. Frequency range
  • 2.6.5. The main specifications of digital lonosonde at Trivandrum
  • 2.6.6. lonogram
  • 2.6.7. The Transmitter
  • 2.6.8. The Receiver
  • 2.6.9. Noise Removal
  • 2.6.10. Antenna Analysis
  • 2.7. Indian Mesosphere--thermosphere-Troposphere (MST) radar at Gadanki. Tirupati
  • 2.7.1 Indian MST radar
  • 2.7.2. Configuration of MST radar
  • 2.7.3. Transmitter system
  • 2.7.4. Antenna array configuration
  • 2.7.5. Receivers stem
  • 2.8 HF backscatter radar at Thumba
  • 2.8.1. Radar controller
  • 2.8.2. Transmitter
  • 2.8.3. Antenna system
  • 2.8.4. Receiver system,
  • 2.8.5. The data acquisition system
  • 3. STUDIES ON THE ELECTRODYNAMICS / NEUTRAL DYNAMICS ASSOCIATED WITH THE ONSET OF EQUATORIAL SPREAD F
  • 3.1. Introduction - Equatorial Spread F
  • 3.2. Database and method of analysis
  • I. Role of meridional wind on the onset of ESF
  • 3.3. Estimation of meridional wind and its variabilities
  • 3.3.1. Case I: Occurrence of ESF with hF > 300 km
  • 3.3.2. Case II: Occurrence of ESF with h F < 300 km
  • 3.3.3. Case III: Occurrence of ESF on moderately disturbed days
  • 3.4. Specific Observations
  • 3.5. Results and discussions
  • II. Inhibition / development of ESF on magnetically disturbed days
  • 3.6. A case study of the disturbed day events
  • 3.7. Data and method of.analysis
  • 3.8. Results and discussions
  • 3.9 Specific observations on international disturbed days
  • 3.10. Summary and conclusions
  • III. Study on the variation of critical height (h F) with solar activity and their control on the occurrence of ESF their control oft the occurrence of E F
  • 3.11. Solar activity linked variabilities in the thermospheric meridional winds
  • 3.12. Data and method of.analysis
  • 3.1 3. Results and discussion
  • 4. STUDIES ON THE EFFECT OF AUGUST 11, 1999 SOLAR ECLIPSE ON THE ELECTRODYNAMICS OF EQUATORIAL IONOSPHERE
  • 4. I. Introduction
  • 4.I.1. The solar eclipse phenomena
  • 4. I.2. Effects of solar eclipse on the atmospheric phenomena
  • 4.1.3. Overview of the solar eclipse phenomena
  • 4.1.4. Solar eclipse of August 1 1. 1999
  • 4.2. Data base
  • 4.3. lonosonde data
  • 4.4 VHF backscatter radar - E-region effects
  • 4.5. F-region effects
  • 4.6. Results and discussion
  • 4.7. Conclusions
  • 5. LEANED METEOR SHOWER - INVESTIGATION OF ELECTRODYNA MIC PROCESS OF EQUATORIAL IONOSPHERIC E REGION BY USING LONG- LIVED METALLIC ION LAYER AS A TRACER
  • 5.1. Introduction to Leonid meteor shower
  • 5. 1.1. Effect of Leonids-99 meteor shower in the ionosphere
  • 5.2. Leonid-99 campaign
  • 5.3. Results
  • 5.3.1. Ionospheric data
  • 5.3.2. MST radar in meteor mode operation
  • 5.3.3. MST radar in the Ionospheric mode of operation
  • 5.3.4. VHF backscatter radar data
  • 5.4. Discussions
  • 5.5. Conclusions
  • 6. STUDY OF TYPE II IRREGULARITIES DURING COUNTER ELECTROJET EVENTS ASSOCIATED WITH THE BLANKETING Es LAYER
  • 6.1. Introduction
  • 6.2. Data base
  • 6.3. Experimental observations
  • 6.3.1. Characteristics of Type 11 Echoes during daytime - on Non CEJ days
  • 6.3.1.1. 7.7.2000 (Ap=5) A quiet day without the occurrence of blanketing ES layers
  • 6.3.2. Characteristics of Type 11 Echoes during daytime - on CEJ days
  • 6.3.2.1. Case I: 22.6.2000 (Ap=11), A quiet day without the occurrence of Esh Layers
  • 6.3.2.2. Case II: CEJ event on 20.6.2000 (Ap=6): Strong Type II signals and strong blanketing ES occurrence
  • 6.3.2.3. Case III: CEJ event on 4.7.2000 (Ap=8): strong Type 11 signals with very strong blanketing ES occurrence
  • 6.3.2.4. Case IV: CEJ event on 6.7.2000 (Ap=5): Weak Type ti signals with strong blanketing Es occurrence
  • 6.4. Results and Discus ions
  • 6.5. Summary
  • 7. A STUDY OF EQUATORIAL IONOSPHERIC RESPONSE TO THE MAGNETIC STORM OF 3-11, NOVEMBER 1993
  • 7. I. Introduction
  • 7.1.1. Geomagnetic storms: Onset and development
  • 7. 1.2. Classification of magnetic storms
  • 7. 1. 3. Different phases of magnetic storms
  • 7.1.4 A case study of the geomagnetic storm of November; 3-11- 1993
  • 7.2. Data base
  • 7.3. Results and discussion
  • 7.3.1. Overview of geomagnetic storm and associated equatorial ionospheric storm
  • 7.3.2. Morning counter electrojet and EIA
  • 7.3.3. Daytime perturbations in F layer Peak height and density and EIA
  • 7.3.4. Nighttime changes in F layer height and peak density
  • 7.4.Summary and Conclusions
  • 8. SUMMARY AND CONCLUSIONS
  • Scope for the future work
  • References