HOME
Search & Results
Full Text
Thesis Details
Page:
208
Full Screen
TITLE
DEDICATION
CERTIFICATE
DECLARATION
ACKNOWLEDGEMENT
GLOSSARY OF TERMS
CONTENTS
Preface
1 Introduction
1.1 Types of polymer blends
1.1.1 Plastics- plastics blends
1.1.2 Plastics-rubber blends
1.1.3 Rubber-rubber blends
1.2 Modification of PVC
1.2.1 General charactteristics of PVC
1.2.2 Compounding of PVC
1.2.2.1 Thermal stabilisers
1.2.2.2 Plasticisers
1.2.3 PVC modification by blending
1.2.3.1 Blends of PVC with homochain homopolymers
1.2.3.2 Blends of PVC with homochain copolymers
1.2.3.3 Blends of PVC with terpolymers
1.2.3.4 Blends of PVC with heterochain polymers
1.3 Polymer-polymer miscibility
1.3.1 Definition
1.3.2 Thermodynamics of polymer miscibility
1.3.3 Characterisation of polymer miscibility
1.3.3.1 Glass transition temperature (Tg)
1.3.3.2 Scattering methods
1.3.3.3 Specific volume
1.3.3.4 Melting point depression
1.3.3.5 Microscopy
1.3.3.6 Rheologcal studies
1.4 Property analysis of blend systems
1.4.1 Mechanical behaviour
1.4.2 Pracessability and rheolog
1.4.3 Degradation
1.5 Blending methods
1.6 Polymerit plasticisers
1.6.1 Butadiene-acrylonitrile copolymers (NBR)
1.6.2 Ethylene- vinylacetate copolymers (EVA)
1.6.3 Polyesters
1.6.4 Epoxidised polydienes
1.6.5 Miscellaneous
1.7 Scope and objectives of the present work
1.7.1 Objectives
1.8 References
2 Experimental
2.1 Materials
2.2 Experimental
2.2.1 Preparation of low molecular weight liquid natural rubber (L-LNR)
2.2.2 Preparation of high molecular weight liquid natural rubber (H-LNR)
2.2.3 Preparation of low molecular weight epoxidised liquid natural rubber with 50 mol % epoxidation (L-ELNR-50)
2.2.4 Preparation of low molecular weight epoxidised liquid natural rubber with 20 mol % epoxidation (L-ELNR- 20)
2.2.5 Preparation of high molecular weight epoxidised liquid natural rubber with 50 mol % epoxidation (H-ELNR-50)
2.2.6 Preparation of high molecular weight epoxidised liquid natural rubber with 20 mol % epoxidation (H-ELNR-20)
2.2.7 kinetics of epoxidation
2.3 Preparation of blends
2.3.1 Designation of blends
2.4 Analysis and measurements
2.4.1 Analysis of epoxidised rubber and the blends
2.4.1.1 HBr titration
2.4.1.2 H-NMR analysis
2.4.1.3 DSC analysis
2.4.1.4 IR analysis
2.4.1.5 Viscosity measurements
2.4.1.6 Ultrasonic measurements
2.4.1.7 Tensile measurements
2.4.1.8 SEM analysis
2.4.1.9 Tensile impact measurement
2.4.1.10 Study of thermal behaviour
2.5 Reference:
3 Results and Discussion
3.1 Epoxidation of liquid natural rubber
3.1.1 Spectroscopic method for estimation of epoxy group in ELNR
3.1.1.1 lR method for the estimation of epoxy group
3.1.1.2 NMR method for the estimation of epoxy group
3.1.2 DSC method for the estimation of epoxy group
3.1.3 Kinetics of epoxidation
3.1.3.1 Effect of temperature on the extent of epoxidation
3.1.3.2 Effect of reaction time
3.1.3.3 Effect of reagent concentration
3.2 Compatibility studies of ELNR and PVC in solution
3.2.1 Viscosity measurement
3.2.1.1 Theoretical consideration
3.2.1.2 PVC / L-LNR blends
3.2.1.3 PVC / ELNR- 20 blends
3.2.1.4 PVC / L-ELNR-50 blends
3.2.2 UItrasonic measurement
3.2.2.1 PVC / L-LNR blends
3.2.2.2 PVC / L-ELNR-20 blends
3.2.2.3 PVC / L-ELNR-50 blends
3.3 Preparation and characterisation of PVC / ELNR blends
3.3.1 IR studies
3.3.2 Thermal analysis
3.3.2.1 Blends of PVC with ELNR-20
3.3.2.2 Blends of PVC with ELNR 50
3.3.4. Thermogravimetric studies of the blends of PVC with ELNR
3.3.4.1 Thermal degradation of PVC
3.3.4.2 Thermal degradation of liquid rubbers
3.3.4.3 Thermal degradation of PVC / L-LNR blends
3.3.4.4 Thermal degradation of PVC / L-ELNR 20 blends
3.3.4.5 Thermal degradation of PVC / L-ELNR 50 blends
3.1.4.6 Effect of epoxy content of liquid rubber on the degradation of PVC
3.3.5 Tensile
3.3.5.1 Deformation behaviour of PVC / L-ELNR-50 blends
3.3.5.2 Deformation behaviour of PVC / H-ELNR 50 blends
3.3.5 3 Deformation behaviour of PVC / L-ELNR 20 blends
3.3.5.4 Deformation behaviour of PVC / H-ELNR 20 blends
3.3.5.5 Effect of molecular weight of the epoxidised liquid natural rubber on tensile properties
3.3.5.6 Effect of epoxy content of the liquid natural rubber on.the of PVC
3.3.6 Tensile fracture studies by SEM
3.3.6.1 Fractographs of PVC / L-ELNR-50 blends
Fig. 3.75. Tensile fractograph of PVC.
Fig. 3.76. Tensile fiactograph of PVC/L-ELNR-50 at 70/30 composition
Fig. 3.77. Terlsile fiactograph of PVCIL-EI., N K-50 at 50/50 co~i- position
Fig. 3.78. Tensile fractograph of PVUL-ELNR-50 at 30J70 compositjon
3.3.6.2 Fractographs of PVC / L-ELNR-20 blends
Fig. 3.79. Tensile fi-actograph of PVCL-ELNR-20 at 70/30 cornposition.
Fig. 3.80. Tensile fractograph of PVCYL-ELNR-20 at 50/50 composition.
3.3.6.3 Fractographs of PVC / H-ELNR-50 blends
Fig. 3.81. Tensile Gactograph of PVC/H-ELhIR-SO at 70/30 cornposition.
Fig. 3.82. Tensile fractograph of PVC/H-ELNR-50 at 50/5O co~liposition.
3.3.6.4 Fractographs of PVC / H-ELNR-20 blends
Fig. 3.83. Terlsile fiaciogra~ho f PVC/H-ELNR-20 at 70130 colnpositiun.
Fig. 3.84. Tensile fiactograph of PVCIH-ELNR-20 at 50150 colnposition.
3.3.7 Tensile Impact behaviour
3.3.7.1 Tensile impact behaviour of PVC / H-ELNR-20 blends
3.3.7.2 Tensile lmpact behaviour of PVC / L-ELNR-20 blends.,.
3.3.7.3 Tensile impact behaviour of PVC / H ELNR-50 blends
3.3.7.4 Tensile impact behaviour of PVC / L-ELNR-50 blends. 3.3 7.5 Effect of molecular weight on the tensile impact stregth of PVC / ELNR system
3.3.7.5 Effect of mdwular welght on me tenslle Impact strength of PVCIELNRs y s h
3.3.7.6 Effect of epoxy content of rubber on the tensile Impact strength
3.3.8 Tensile impact fracture studies by SEM
Fig. 3.91. Tensile impact fractograph of PVC.
Fig. 3.92. Tensile impact fiactograph of PVCfL-ELNR-50 at 80120 composition.
Fig. 3.93. Tensile impact fractograph of PVCL-ELNR-20 at 80120 composition.
Fig. 3.94. Tensile impact fractograph of PVC/H-ELNK-20 at R0/20 composition.
Fig. 3.95. Tensile impact fractograph of PVCIH-ELNR-50 at 80/20 composition.
3.3.9 Morphological studies of PVC / ELNR blend systems using SEM
3.3.9.1 Blends of PVC / L-ELNR-50
Fig. 3.96. Scming electron micrograph of PVC/L-ELNR-50 at 80/20composition.
Fig. 3.97. Scanning electron ~nicrograph of PVCIL-ELNR-50 at 70130composition.
Fig. 3.98. Scanning electron micrograph of PVCL-ELNK-50 a1 50150composition.
3.3.9.2 Blends of PVC / L-ELNR-20
Fig. 3.99. Scanning electron rt~icrograph of PVC/L-EL.NR-20 at 80/30composition.
3.3.9.3 Blends of PVC / H-ELNR-50
Fig. 3.100. Scanning electron micrograph of PVC/H-ELN R-50 at 70130composition,
3.3.9.4 Blends of PVC / H-ELNR-20
3.3.9.5 Effect of molecular weight of rubber on the morphology of.PVC / ELNR blends
3.3.9.6 Effect of epoxy content on the morphology of PVC / ELNR blends.
3.4 References
4 Conclusion
4.1 Preparation and characterisation of epoxidised liquid natural rubber (ELNR)
4.2 Compactability studies
4.2.1 Viscosity measurements
4.2.2 Ultrasonic studies
4.3 Thermal
4.4 Characterisation of the blend systems
4.4.1 Thermogravimetric studies of the blends of PVC with ELNR
4.4.2 Tensile
4.4.3 Tensile fracture studies by SEM,
4.4.4Tensile impact behaviour
4.4.5 Tensile impact fracture studies by SEM
4.4.6 MorphologicaI studies of PVC / ELNR system using SEM
4.4.7 observations
4.5 Scope for further studies
4.6 References
List of Publications