HOME
Search & Results
Full Text
Thesis Details
Page:
180
Full Screen
TITLE
DEDICATION
CERTIFICATE
DECLARATION
ACKNOWLEDGEMENT
C0NTENTS
1. INTRODUCTION AND OBJECTIVES
2. POLYMER SUPPORTED REACTIONS: FUNDAMENTAL ASPECTS
2.1. Nature of the polymer support
2.2. Swelling behaviour of functional polymers
2.3. Chemical modification of the supports
2.4. Characterization of functionalized supports
2.5. Advantages and limitations of the polymer supported strategy
2.6. Nature of the polymer backbone
2.7. Microenvironmental effects
2.8. Proximity effects
2.9. Diffusional and molecular sieving effects
2.10. Effect of cross link density
2.11. Polymer supported oxidising reagents
2.12. Polymeric redox reagents
2.13. Halogen containing reagents
2.14. Polymer supported peracids, peroxides and periodate-type reagents
2.15. Polymer supported permanganate reagents
2.16. Polymer supported chromium (VI) compounds
2.17. Miscellaneous polymeric oxidising reagents
3. RESULTS AND DISCUSSION
3.1. Poly (1-vinyl-2-pyrroIidone) supported oxidising reagents: Preparation and analysis
3.1.1. Preparation of NNMBA -cross linked poly (1-vinyl-2 pyrrolidone) supports
3.1.1.a. Characterization
3.1.2. Preparation of TTEGDA-cross linked poly (I-vinyl-2pyrroIidone) polymer
Fig. 3.1 TG and DTG of 2% TTEGDA crosslinked PVP
Fig. 3.2. Scanning electron micrograph of 2% TTEGDR crosslinked PVP.
3.1.3. Preparation of DVB-cross linked poly (l-vinyl-2-pyrrolidone)
Fig. 3.3 TG and DTG of 2% DVB crosslinked PVP
Fig. 3.4. Scanning electron micrograph of 2% DVB- crosslinked PVP.
3.1.4. Preparation of DVB-cross linked poly (1-vinyl-2 pyrrolidone-co-styrene) (styrene 10%)
3.2. Functionalization of poly (1-vinyl-2-pyrroIidone) with permanganate
Fig. 3.5 Effed d the nature and extent of crosslinking on capacity
Fig. 3.6. TG and DTG of 2% TTEGDA- crosslinked PVP Mn04
Fig. 3.7. TG and DTG of 2% DVB- crosslinked PVP Mn04
Fig. 3.8. Scanning electron micrographs of 2% TTEGDA crosslinked PVP MnO3
Fig. 3.9. Scanning electron micrographs of 2% DVB- crosslinked PVP Mn04
3.2.1. Incorporation of permanganate function into poly[1-vinyl (2-pyrroIidone-co-styrene) ) matrix (styrene content 10%)
3.3. Functionalization of poly (1-vinyl-2-pyrrolidone) with chlorochromate
Fig. 9.10. Effect of the nature and extent dcrossllnking on capaclty
3.4. Functionalization of poly (l-vinyl-2-pyrroIidone) with dichromate
Fig. 3.11. Effect of the nature and extent of crosslinking on capacity
3.5. Oxidation reactions with the polymer-supported reagents
3.5.1. Oxidation reactions using NNMBA-cross linked poly[1-vinyl (2-pyrroIidonium permanganate) ] resin
3.5.2. Oxidation reactions using tetraethyleneglycol diacrylate cross linked poly[1-vinyl (2-pyrrolidonium permanganate) ] resin
3.5.3. Oxidation reactions using DVB-cross linked poly[1-vinyl (2-pyrrolidonium permanganate) ] resin
3.6. Oxidation reactions using cross linked poly[) -vinyl (2-pyrrolidonium chlorochromate) ] resin
3.7. Oxidation reactions using cross linked poly[l-vinyl (2-pyrrolidonium dichromate) ] resin
3.8. Oxidation reactions using NNMBA-cross linked poly (1-vinyl (2-pyrrolidonium-co-styrene permanganate) ] resin
3.9. Stability, recycling and reuse of the spent resin
3.10. Effect of solvents on the oxidation reaction
Fig. 3.12 (a) Effect of solvent on reactivity d NNMBA crosslinked PVPMn04
Fig. 5.1 2 (b) Effect of solvent on reactivity of TTEGDA croesllnked PVPMnO4
Fig. 9.1 2 (c) Effect of solvent on reactivity of DVB crosslinked PVPMn04
3.11. Effect of molar excess of the polymeric reagent
Fig. 3.13. Effect of molar excess on reagent on reactivity TTEGDA-crosslinked PVPMnO, resin (Benzoin oxidation)
3.12. Effect of temperature on the oxidation reaction
Fig. 3.14. Effect of temperature on reactivity of TTEGDA crosslinked PVPMn04 resin (Benzoin oxidation)
3.13. Structural and reactivity characteristics of the polymer
3.14. Dependence of the nature and extent of cross linking on oxidation reactions
Fig. 3.15. Effect of crosslink density on reactivity of NNMBA- crosslinked poly[1-vinyl (2-pyrrolidonium permanganate) ] resin
Fig. 3.16. Effect of crosslink density on reactivity of TTEGDA-poly[1 -vinyl (2-pyrrolidonium permanganate) ] resin
Fig. 3.17. Effect of crosslink density on reactivity of DVB- crosslinked poly[1 -vinyl (Pyrrolidonium permanganate) ] resin
Fig. 3.18. Dependence of the nature and extent of crosslinking on reactivity
3.15. Monitoring the course of the reaction
3.16. Duration of the reaction
3.17. Stability and shelf life of the reagents
3.18. Comparison with other polymer supported oxidising agents
3.19. Comparison with low-molecular weight oxidants
3.20. Characterization of the products
4. EXPERIMENTAL
4.1. Preparation of cross linked poly (1-vinyl-2-pyrrolidones) (PVP): General procedure
4.2. Preparation of cross linked poly (1-vinyl (2-pyrrolidone-co-styrene) ] copolymer (PVPS) (styrene content 10%)
4.3. Preparation of cross linked poly [l-vinyl (2-pyrrolidonium permanganate) ] (PVP Mn04)
4.4. Incorporation of permanganate function into cross linked poly (1-vinyl (2-pyrrolidone-co-styrene) ] resine
4.5. Determination of the capacity of the permanganate resin
4.6. Recycling and reuse of the spent poly[l-vinyl (2-pyrrolidonium permanganate) ] resin
4.7. Preparation of cross linked poly[1-vinyl (2-pyrrolidonium chlorochromate) ]
4.8. Determination of the capacity of the chlorochromate resin
4.9. Recycling and reuse of the spent polymeric chlorochromate resin
4.10. Preparation of poly[l-vinyl (2-pyrrolidonium dichromate) ]
4.11. Determination of the capacity of the dichromate resin
4.12. Recycling and reuse of the spent poly[1-vinyl (2-pyrrolidonium dichromate) ) resin
4.13. Oxidation reactions: General procedure
4.14. Monitoring the course of the oxidation reactions
Fig. 4. Spectrophotometric calibration curve benzil in different solvents
4.15. Effect of solvent on the oxidation reactions
4.16. Effect of molar excess of the reagent on the oxidation reactions
4.17. Effect of temperature on oxidation reactions
4.18. Effect of cross linking on the oxidation of benzoin
5. SUMMARY AND OUTLOOK
REFERENCES