• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 304
 
Full Screen

  • TITLE
  • DECLARATION
  • CERTIFICATE-1
  • CERTIFICATE-2
  • ACKNOWLEDGEMENT
  • ABSTRACT
  • PREFACE
  • PAPERS PUBLISHED / COMMUNICATED TO JOURNALS
  • PAPERS PRESENTED IN SEMINARS
  • CONTENTS
  • LIST OF TABLES
  • LIST OF FIGURES
  • 1. THEORIES, KINETICS AND TECHNIQUES OF CRYSTAL GROWTH
  • 1.1 Introduction
  • 1.2 Theories of Nucleation
  • 1.2.1 Homogeneous Nucleation
  • 1.2.2 Heterogeneous Nucleation
  • 1.2.3 Gibb’s formula
  • 1.2.4 Thermodynamics of crystal growth
  • 1.2.5 The SOS model
  • 1.2.6 The Equilibrium crystal shape
  • 1.3 Kinetics of crystal growth
  • 1.3.1 The Wulff construction
  • 1.3.2 Diffusion theory
  • 1.3.3 Kossel, Stranski and Volmer (KSV) theory
  • 1.3.4 Screw dislocation (BCF) theory
  • 1.3.5 The Jackson α -factor�
  • 1.3.6 Periodic bond chain theory
  • 1.3.7 The Muller- Krumbhar model
  • 1.3.8 Frank’s model
  • 1.4 Crystal growth techniques
  • 1.4.1 Introduction
  • 1.4.2 Growth from the melt
  • 1.4.3 Growth from the vapour phase
  • 1.4.4 Growth from solutions
  • References
  • 2. CRYSTAL GROWTH BY GEL METHOD ANDTECHNIQUES USED FOR CHARACTERIZATION
  • 2.1 Introduction
  • 2.2 Gel- a medium for crystal growth and advantages of Gel Technique.
  • 2.3 Gelling mechanism and gel structure
  • 2.4 Basic growth procedures
  • 2.4.1 The chemical reaction method
  • Fig. 2.1 & 2.2
  • Fig 2.3 Double tube growth systems with possibilities for pH and composition control in the growth region
  • 2.4.2 The Complex dilution method
  • 2.4.3 The Solubility reduction method
  • 2.5 Crystallization process in gel medium
  • 2.6 Nucleation control
  • 2.7 Effect of various parameters
  • 2.7.1 Effect of pH on gel setting time
  • 2.7.2 Effect of gel density
  • 2.7.3 Effect of gel aging
  • 2.7.4 Effect of gel concentration of reactants
  • 2.8 Objectives and scope of the present work
  • 2.8.1 Phosphate crystal
  • Fig 2.8
  • 2.8.2 Effect of neodymium doping
  • 2.9 Introduction
  • 2.10 X-ray powder diffraction analysis
  • Fig. 2.10. X-ray powder diffractometer
  • 2.11 Fourier Transform Infra Red Spectroscopy
  • Fig. 2.11. FTIR Spectrophotometer
  • 2.12 Thermal Analysis
  • Fig 2.12 Schematic illustration of a DTA cell
  • Fig 2.13 Diagram of a power compensated differential scanning calorimeter
  • 2.13 Energy Dispersive Spectrum Analysis
  • 2.14 X-Ray Fluorescence Spectroscopy
  • 2.15 Optical Microscopy
  • Fig 2.15 Optical Microscope
  • 2.16 Scanning Electron Microscopy
  • Fig 2.16 How the SEM Works
  • Fig 2.17 SEM Ray Diagrams
  • 2.17 UV-Visible spectral studies
  • Fig 2.18 Diagram of a single-beam UV/vis spectrophotometer
  • 2.18 Microwave dielectric studies
  • References
  • 3. GROWTH AND CHARACTERIZATION OF PURE ANDNEODYMIUM DOPED CALCIUM HYDROGENPHOSPHATE SINGLE CRYSTALS
  • 3.1 Introduction
  • 3.2 Growth kinetics
  • 3.2.1 Calcium hydrogen phosphate [CHP] crystals
  • FIG 3.1 & 3.2
  • 3.2.2 Neodymium doped Calcium hydrogen phosphate
  • FIG 3.3 & 3.4
  • 3.3 Characterization
  • 3.3.1 Introduction
  • 3.3.2 X-ray powder diffraction analysis
  • 3.3.3 Fourier Transform Infra Red [FTIR] Spectroscopy
  • 3.3.4 Thermal Analysis
  • 3.3.5 X-Ray Fluorescence Spectroscopy
  • 3.4 Conclusions
  • References
  • 4. GROWTH AND CHARACTERIZATION OF PURE ANDNEODYMIUM DOPED BARIUM HYDROGENPHOSPHATE SINGLE CRYSTALS
  • 4.1. Introduction
  • 4.2. Growth kinetics
  • FIG 4.1 TO 4.3
  • 4.3 Characterization
  • Fig 4.13 TGA & DTA of Nd: BHP
  • 4.4 Conclusions
  • References
  • 5. GROWTH AND CHARACTERIZATION OF PURE ANDNEODYMIUM DOPED STRONTIUM HYDROGENPHOSPHATE SINGLE CRYSTALS
  • 5.1 Introduction
  • 5.2. Growth kinetics
  • FIG 5.1 TO 5.4
  • 5.3 Characterization
  • Fig 5.9 TGA & DTG of SHP
  • FIG 5.10 TGA & DTA of SHP, 5.11 DSC of SHP
  • 5.4 Conclusions
  • References
  • 6. MICRO TOPOGRAPHY, OPTICAL ANDDIELECTRIC STUDIES
  • 6.1 Surface Morphology by Optical Microscopy
  • 6.1.1 Introduction
  • 6.1.2 Calcium hydrogen phosphate crystals
  • 6.1.3 Neodymium doped calcium hydrogen phosphate crystals
  • FIGURES
  • 6.1.4 Barium hydrogen phosphate crystals
  • 6.1.5 Neodymium doped barium hydrogen phosphate crystals
  • FIGURES
  • 6.1.6 Strontium hydrogen phosphate crystals
  • 6.1.7 Neodymium doped strontium hydrogen phosphate crystals
  • FIGURES
  • FIGURES
  • 6.2 Surface Morphology by Scanning Electron Microscopy
  • 6.2.1 Introduction
  • 6.2.2 Pure and neodymium doped calcium hydrogen phosphate crystals
  • 6.2.3 Pure and neodymium doped barium hydrogen phosphate crystals
  • 6.2.4 Pure and neodymium doped strontium hydrogen phosphate crystals
  • FIGURES
  • FIGURES
  • 6.3 Dislocation studies
  • 6.3.1 Introduction
  • 6.3.2 Neodymium doped calcium hydrogen phosphate crystals
  • 6.3.3 Neodymium doped barium hydrogen phosphate crystals
  • 6.3.4 Conclusions
  • 6.4 UV-Visible Absorption Studies
  • 6.4.1 Introduction
  • 6.4.2 Neodymium doped calcium hydrogen phosphatecrystals
  • 6.4.3 Neodymium doped barium hydrogen phosphate crystals
  • 6.4.4 Neodymium doped strontium hydrogen phosphate crystals
  • 6.4.5 Conclusions
  • 6.5 Microwave Dielectric studies
  • 6.5.1 Introduction
  • 6.5.2 Principle and theory of cavity perturbation technique
  • 6.5.3 Complex permittivity of materials
  • 6.5.4 Conductivity of materials
  • 6.5.5 Experimental set up of cavity perturbation technique
  • 6.5.6 Dielectric constant measurements
  • 6.5.7 Conclusions
  • References
  • 7. LIESEGANG RING PHENOMENON AND THEEFFECT OF DOPANT IN THE RING SYSTEM
  • 7.1 Introduction
  • 7.2 Early Work
  • 7.3. Recent works
  • 7.4 Generic laws
  • 7.5 Experimental method
  • 7.6 Effect of various parameters
  • 7.7 Verification of generic laws
  • 7.8 Estimation of Diffusion coefficient
  • 7.9 Conclusions