• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 368
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE-1
  • CERTIFICATE-2
  • DECLARATION
  • GLOSSARY OF TERMS
  • ACKNOWLEDGEMENT
  • CONTENTS
  • 1. Introduction
  • I. I. Polymer blends.
  • Table I.I Principal properties claimed in polymer blend patents
  • Fig. 1.1: Schematic representation of the steps to be taken when developing polymer blends
  • 1.2. Polymer blends: Miscibility and Compatibility.
  • Table 1.2: Examples of intermolecular interactions in polymer blends ofvarying degrees of miscibility
  • 1.3. Compatibilisation in blends
  • Fig. 1.2: Summary of the factors contributing to end-use properties in melt compounded blends
  • 1. 4. Method of polymer blending.
  • 1.5. Thermoplastic elastomers
  • Fig. 1.6: Digrammatic morphology of a thermoplastic elastomer
  • 1.6. Dynamic vulcanization.
  • Fig. 1.7: Illustrative idealization of phase mrphologies of TPE Mendsbefore and after dynamic vulcanization.
  • 1 7. Relevance of styrenic plastics-nitrile rubber TPEs.
  • 1.8 Scope of the work .
  • References.
  • 2. Experimental Procedure
  • 2. 1. Characterization techniques used in this work .
  • 2.2. Experimental Details.
  • 2.2.1.Materials.
  • Table 2.1. Details of materials used
  • 2.2.2.Blend preparation.
  • 2.2.3.Morphological studies.
  • 2.2.4.Molecular weight determination.
  • 2.2.5.Dilute solution properties.
  • 2.2.6.Mechanical testing.
  • 2.2.7.Melt-rheological measurements.
  • 2.2.8.Fourier-transformed infra-red spectroscopy
  • 2.2.9.Thermal characterization.
  • 2.2.10.Swelling studies.
  • References.
  • 3. Compatibility Studies of PS / NBR, SAN / NBR & ABS / NBR Binary Systems
  • 3.1Compatibility of the blends in the solid state.
  • 3.1.1.Determination of solubility parameter.
  • 3.1.2.Polymer-polymer interaction in the blends.
  • 3.1.3.Spectroscopic evidence in the blends.
  • 3.2 Compatibility of the NBR based blends in solution.
  • 3.2.1. Dilute Solution Viscosity Theories for Compatibility Studiesof Polymer Blends
  • 3.2.2. Additivity Concept of Intrinsic Viscosity for Assessing Miscibility
  • 3.2.3. Specific Viscosity as given by Catsiff & Hewetts Model
  • 3.2.4. Krigbaum and Wall Parameter,
  • 3.2.5. Dilute Solution Density Measurements
  • References.
  • 4. Polystyrene / Acrylonitrile-Butadiene Rubber Binary Blends
  • 4.1. State of compatibility.
  • 4.2. Optimization of mixing parameters
  • 4.3. Morphology of the blends.
  • Fig.4 6: Scanning electron micrographs of melt-mixed PS/NBR blends; PS30 (a), PS50 (b) and PS70 (c) .
  • Fig.4 7. Optical micrographs of solution-casted PS/NBR blends; PS30 (a), RS50 (b), and PS70 (c)
  • 4.4. Processing characteristics.
  • 4.5. Mechanical properties.
  • 4.6. Rheological properties.
  • 4.6.1Melt rheology of blends.
  • 4.6.2.Melt elasticity of blends.
  • 4.6.2.a Extrudate Swell (or Die-swell)
  • 4.6.2.b. Principal Normal Stress Difference
  • 4.6.2.c. Recoverable Elastic Shear Strain
  • 4.6.2.c. Elastic Shear Modulus
  • 4.6.3. Melt Fracture
  • Fig.4.3 1: Scanning electron micrographs of the extrudate surface of PS30 (a) PS5O (b), and PS70 (c); extruded at 139 /s. (Mag: 50x) .
  • 4.6.3.b. Effect of Shear Rate
  • Fig.4.32: Scanning electron micrographs of the PS50 blend extrudate, extruded at two different shear rates, viz. (a) 69 /s and (b) 278 /s.
  • 4.6.4.Effect of processing on state of dispersion.
  • Fig. (a) 4.33: Scanning electron micrographs of the outer regions of the PS/NBR blend extrudates, extruded at y =I 39/s. (a) PS30, (b) PS50, and (c) PS70 blend (Mag 800 x)
  • Fig.4.34: Scanning electron micrographs of the core regions of the PS/NBR blend extrudates, extruded at y =I39 /s. (a) PS30, (b) PS50, and (c) PS70 blend. (Mag: 800x)
  • Fig.4.35: Scanning electron micrographs of PS50 blend extrudates, extruded at y =69 /s. (a) core region, (b) outer region. (Mag: 800x)
  • Fig.4.36: Scanning electron micrographs of PSso blend extrudates, extruded at y -278 Is. (a) core region, (b) outer region. (Mag: 800x)
  • 4.7. Thermal properties.
  • References.
  • 5. Poly (styrene-co-acrylonitrile) I Acrylonitrile-Butadiene Rubber Binary Blends
  • 5.1. Brabender rheometry.
  • 5.2. Morphology.
  • Fig.5.3: Scanning electron micrographa of SAN/NBR blends; SAN30 (a), SAN (b), and SAN70 (c)
  • Fig.5.4: Optical micrographs of solution-casted SAN/NBR blends; SAN30 (a), SAN50 (b), and SAN70 (c)
  • 5.3. Mechanical properties.
  • 5.4. Rheological properties.
  • 5.5. Thermal properties.
  • References.
  • 6. Poly (acrylonitrile-co-butadiene-co-styrene) / Acrylonitrile-Butadiene Rubber Blends
  • 6.2. Rheological properties.
  • 6.3. Melt elasticity.
  • 6.4. Thermal properties.
  • References.
  • 7. Compatibilisation of heterogeneous PS / NBR blends by the addition of SAN and ABS copolymers
  • 7.1. Compatibilisation using SAN copolymer.
  • Fig. 7.1: Schematic mechanism illustrating the interfacial activity of SAN copolymer in PS/NBR blends.
  • 7.1.1.Morphology.
  • Fig.7.3: Optical micrographs of PS/NBR 30170 blend with 2 wt.% SAN.
  • Domain size distributions
  • 7.1.2.Brabender torque rheometry.
  • 7.1.3.Morphology of the melt-mixed blends.
  • 7.1.4.Tensile properties.
  • Fig.7.10. Scanning electron micrographs of melt-mixed PS/NBR blends compatibilised with SAN; (a) PS50 SAN 2wt % (b) PS50 SAN 10wt.%
  • 7.1.5.Tear properties and Hardness.
  • 7.1.6.Impact properties.
  • 7.1.7.Effect of PS / NBR ratio on the mechanical properties.
  • 7.1.8.Effect of mixing protocol.
  • Fig.7.20: Speculative model representing the behaviour of compatibiliser having different mode of mixing.
  • 7.1.9.Melt rheology of compatibilised Blend.
  • 7.1.10.Melt fracture.
  • Fig.7.29: Scanning electron micrographs of the extrudate surface of PS/NBR 50/50 blends compatibilised with SAN;
  • 7.1.11 State of dispersion in processed blends.
  • Fig.4.30. Scanning electron micrographs of PS/NBR 50/50 (compatibilised with 2 wt % SAN) blend extrudates, extruded at y = 139 is. (a) core region, (b) outer region. (Mag: 800x)
  • 7.1.12.Thermal properties.
  • 7.2 Compatibilisation using ABS copolymer.
  • 7.2.1.Morphology.
  • Fig. 7.37: Schematic mechanism illustrating the interfacial activity of ABS terpolymer in PS/NBR blends.
  • Fig.7.38: Optical micrographs of solution-casted PS/NBR blends compatibilised with ABS; (a) PS30 ABS 2wt.%, (b) PSSO ABS 2wt.% and (c) PS70 AJ3S 2wt.%
  • Fig.7.39: Scanning electron micrographs of melt-mixed PS/NBR blends compatibilised with ABS; (a) PS50 ABS 2wt.%, (b) PS50 ABS 5wt.%.
  • 7.2.2.Mechanical properties.
  • 7.2.3.Melt-flow properties
  • 7.2.4.Thermal properties.
  • 7.3 SAN and ABS as compatibilisers for PS / NBR system: a comparison
  • 7.4 Compatibilising effect of SAN and ABS: mechanism.
  • References.
  • 8. Dynamic vulcanization of the blends
  • 8.1. Effect of the cross-linking system.
  • Fig. 8.4: Scanning electron micrographs of dynamically vulcanizedPSINBR 50150 blends;
  • 8.2. Effect of rubber / plastic ratio on dynamic vulcanization.
  • Fig. 8.5: Schematic representation of dynamically PS/NBR blends.
  • 8.3. Effect of dynamic vulcanization in presence of a compatibiliser
  • Fig 8.6. Scanning electron micrographs of PS/NBR 50/50 blends dynamically vulcanized in presence of a compatibiliser.
  • Fig. 8.7: Scanning electron micrographs of PS/NBR blends
  • 8.4. Thermal properties of dynamically vulcanized blends.
  • 8.5: Swelling behaviour of dynamically vulcanized blends.
  • References.
  • 9. Reprocessability of the blends
  • 9.1: Effect of reprocessing on morphology.
  • 9.2: Effect of reprocessing on structural changes.
  • Fig. Scanning electron micrographs of reprocessed PS/NBR 50/50 blend; zero time reprocessed (a), one time reprocessed (b); two time reprocessed (c)
  • 9.3: Effect of reprocessing on molecular weight.
  • 9.4: Effect of reprocessing on melt-flow properties.
  • Fig.9.4 Scanning electron micrographs of the extrudate surface of reprocessed PS/NBR 50/50 blend; zero time reprocessed (a), one time reprocessed (b), two time reprocessed (c)
  • 9.5: Effect of reprocessing on mechanical properties.
  • References.
  • 10. Conclusion
  • 10.1. Conclusion.
  • 10.2. Scope of future work.
  • List of Publications in International Journals
  • Curriculum Vitae
  • APPENDIX