• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 303
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE-1
  • CERTIFICATE-2
  • DECLARATION
  • ACKNOWLEDGEMENT
  • GLOSSARY OF TERMS
  • CONTENTS
  • 1. Introduction.
  • 1.1 Advantages of TPEs.
  • 1.2 Classification of thermoplastic elastomers.
  • Fig.1.1. (a) Narrow interface in immiscible polymer blends and (b) interfacial density profile between immiscible polymers in a blend (Noolandi, Polym. Eng. SCI., 24, 70 (1984) l.
  • 1.3 Compatibilisation.
  • 1.3.1 Non-reactive compatibilisation (physical compatibilisation)
  • (i) Chemical nature of the compatibiliser
  • (ii) Copolymer chain microstructure
  • (iii) Molecular weight and composition of the copolymer
  • (iv) Concentration of the copolymer
  • (v) Location of the copolymer in the blend
  • (vi) Viscosity of the compatibiliser
  • (vii) Interaction parameter balance and heat of mixing
  • (viii) Blending conditions
  • ix) Order of addition of the compatibiliser
  • (a) Studies related to cornpatibilisation by the addition of graft and block copolymers
  • (b) Compatibilisation by the addition of third polymer
  • 1.3.2 Reactive compatibilisation.
  • (a) Functionalised polypropylenes
  • (b) Functionalised styrene butadiene copolymers
  • (c) Functionalised ethylene propylene rubbers
  • (d) Modified polystyrene
  • e) Reactive extrusion
  • 1.3.3 Dynamic vulcanisation.
  • Fig.1.11. Schematic representation of the morphology of dynamic vulcanised thermoplastic elastomer
  • 1.4 Theories of compatibilisation.
  • 1.5 Scope and objectives of the work.
  • 1.5.1 Morphology and mechanical properties.
  • 1.5.2 Dynamic mechanical properties
  • 1.5.3 Rheological properties.
  • 1.5.4 Thermal properties and crystallisation behaviour.
  • 1.5.5 Electrical properties.
  • 1.5.6 Transport properties.
  • 1.6 References.
  • 2. Experimental.
  • 2.1 Materials used.
  • 2.2 Blend preparation.
  • 2.3 Physical testing of the samples.
  • 2.4 Morphology studies.
  • 2.5 Dynamic mechanical testing
  • 2.6 Rheological measurements.
  • 2.7 Determination of MFI.
  • 2.8 Extrudate swell.
  • 2.9 Extrudate morphology.
  • 2.10 Determination of cross link density.
  • 2.11 Thermogravimetric analysis.
  • 2.12 Differential scanning calorimetry.
  • 2.13 Wide angle X-ray scattering.
  • 2.14 Electrical property measurements.
  • 2.15 Sorption experiments.
  • 2.16 References.
  • 3. Morphology and Mechanical Properties: Effect of Blend Ratio, Compatibilisation and Dynamic Vulcanisation
  • 3.1 Introduction.
  • 3.2 Results and discussion.
  • 3.2.1 Binary blends.
  • (a) Processing characteristics
  • (b) Morphology of the binary blends
  • (c) Mechanical properties
  • 3.2.2 Compatibilisation.
  • (a) Morphologyo f cornpatibilised blends
  • (b) Mechanical properties of cornpatibilised blends
  • 3.2.3 Dynamic vulcanisation.
  • 3.2.4 Filled PP / NBR blends.
  • 3.3 References.
  • 4. Dynamic Mechanical Properties: Effects of Blend Mechanical Properties: Effect of Blend Ratio, Compatibilisation and Dynamic Vulcanisation
  • 4.1 Introduction.
  • 4.2 Results and discussion.
  • 4.2.1 Binary blends.
  • Fig. 4.1. Variation of tan 6 of PP and NBR with temperature
  • Fig.4.2. Variation of loss modulus (E
  • Fig.4.3. Variation of storage modulus (E) of PP and NBR with temperature
  • Fig.4.4. Variation of tan 6 of P P m R binary blends with temperature
  • Fig.4.5. Variation of tan 6, due to NBR of PP/NBR binary blends with wt % ofNBR.
  • Fig.4.6. Variation of storage modulus (E) of binary PPmR blends with temperature.
  • Fig.4.7. Variation of storage modulus (E) of binary PP/NBR blends with wt % ofNBR at 30°C.
  • Fig.4.8. Variation of loss modulus (E) of binary PPINBR blends withtemperature.
  • 4.2.2 Modelling of viscoelastic properties.
  • Fig.4.9. Experimental and theoretical curves of storage modulus of binary PPMR blends as a function of wt % of NBR at 30°C.
  • 4.2.3 Effect of compatibilisation.
  • Fig.4.10. Variation of storage modulus (E) of Ph-PP compatibilised PP/NBR blends with temperature.
  • .Fig.4.11. Variation of modulus (E) of MA-PP compatibilised PP/NBR blends.
  • Fig.4.12. Variation of tan 6 of Ph-PP cornpatibilised PP/NBR blends as a functionof temperature.
  • Fig. 4.13. Variation of tan 6 of MA-PP compatibilised P P m R blends as a functionof temperature.
  • Fig.4.14. Variation of loss modulus (E) of Ph-PP compatibilised PPiNBR blendsas a function of temperature.
  • Fig.4.15. Variation of loss modulus (EM) of MA-PP compatibilised blends as afunction of temperature.
  • 4.2.4 Effect of dynamic vulcanisation.
  • Fig.4.16. Variation of storage modulus (E) of sulphur, DCP and mixed (DCP +sulphur) vulcanised 70130 PP/NBR blends with temperature
  • Fig. 4.17. Variation of loss modulus (E
  • Fig. 4.18. Variation of tan 6 of sulphur, DCP and mixed (DCP + sulphur) vulcanised PPNBR blends with temperature.
  • 4.3 References.
  • 5. Rheological Properties: Effect of Blend Ratio, Reactive Compatibilisation and Dynamic Vulcanisation.
  • 5.1 Introduction.
  • 5.2 Results and discussion.
  • 5.2.1 Effects of blend ratio and shear stress on viscosity
  • Fig.5.1. Effect of shear stress on melt viscosity of PP/NBR blends at differentshear rates.
  • Fig. 5.2. Variation of melt viscosity of PP/NBR blend with NBR concentl-ationat different shear rates.
  • Fig.5.3. The extrudate morphology of (a) P70, (b) P50 and (c) P30 blends
  • 5.2.2 Comparison with theoretical predictions.
  • 5.2.3 Effect of compatibilisation.
  • Fig. 5.5. The effect of shear stress on the melt viscosity of Ph-PP compatibiiised70130 PPMR blends at different shear rates.
  • Fig.5.6. Variation of viscosity with compatibiliser concentration.
  • Fig. 5.7. Effect of addition of Ph-PP on the morphology of 70/30 PPPJBR blend: (a) 5 wt %, (b) 10 wt % and (c) 15 wt %/Ph-PP.
  • Fig.5.8. Domain size distribution curves of Ph-PP compatibilised P7
  • Fig.5.9. Variation of domain size of NBR and viscosity with cornpatibiliser concentration.
  • Fig. 5.10. Variation of interfacial tension of 70130 PPMR blends with compatibiiser concentration.
  • 5.2.4 Effect of dynamic vulcanisation.
  • Fig.5.11. Effect of shear stress on melt viscosity of dynamically wlcanisedPP/NBR blends.
  • Fig.5.12. Morphology of dynamically vulcanised 70/30 PP/NBR blends: (a) PS70 (b) PC70, and (c) PM70.
  • 5.2.5 Effect of temperature.
  • Fig.5.13. Effect of temperature on the melt viscosity of polypropylene, nitrilerubber and 70130 PPMR blend.
  • Fig.5.14. Arrhenius plots of PIOOP70 and PP7010 blends
  • Fig.5.15. Shear rate-temperature super position master curve of P100
  • Fig.5.16. Shear rate-temperature super position master curve of P70.
  • 5.2.6 Flow behavior index (n)
  • Fig.5.17. Effect of blend ratio on flow behaviour index n.
  • 5.2.7 Extrudate morphology.
  • Fig.5.18. The effect of shear rate on the extrudate morphology of 70/30 PP/NBR blends: (a) 16.46 s-, (b) 164.04 s- and (c) 1640.4 s-1
  • Fig.5.19. Domain size distribution curves of P70 extruded at different shear rates.
  • Fig. 5.20. Schematic representation of the droplet break-up during shearing
  • 5.2.8 Extrudate swell.
  • Fig.5.22. Schematic representation of morphology changes during extrusion ofdynamic wlcanised blends.
  • 5.2.9 Melt flow index.
  • 5.2.10 Effect of annealing.
  • Fig.5.25. SEM micrographs of (a) P70 and (b) PP7010 annealed for one hour at200°C.
  • 5.3 References.
  • 6. Thermal and Crystallisation Behaviour.
  • 6.1 Introduction.
  • 6.2 Results and discussion.
  • 6.2.1 Thermal degradation
  • 6.2.2 Effect of compatibilisation.
  • 6.2.3 Effect of dynamic vulcanisation.
  • 6.2.4 Differential scanning calorimetry.
  • 6.2.5 Wide angle X-ray scattering.
  • 6.3 References.
  • 7. Dielectric Properties: Effects of Blend Ratio, Filler Addition and Dynamic Vulcanisation
  • 7.1 Introduction.
  • 7.2 Results and discussion.
  • 7.2.1 Volume resistivity.
  • 7.2.2 Dielectric constant, loss factor and dissipation factor.
  • 7.3 References.
  • 8. Molecular Transport of Aromatic Solvents.
  • 8.1 Introduction.
  • 8.2 Results and discussion.
  • 8.2.1 Effect of blend ratio.
  • 8.2.2 Effect of type of cross linking.
  • 8.2.3 Effect of penetrant size.
  • 8.2.4 Effect of fillers.
  • 8.2.5 Effect of temperature.
  • 8.2.6 Thermodynamic parameters.
  • 8.2.7 Kinetics of diffusion
  • 8.2.8 Comparison with theory.
  • 8.3 References.
  • 9. Conclusion and Future Scope of the Work.
  • 9.1 Conclusion.
  • 9.2 Future scope of the work.
  • 9.2.1 Crystallisation kinetics.
  • 9.2.2 Barrier property measurements.
  • 9.2.3 Interfacial characterisation
  • 9.2.4 Fabrication of useful products.
  • APPENDIX
  • List of Publications