HOME
Search & Results
Full Text
Thesis Details
Page:
304
Full Screen
TITLE
DECLARATION
CERTIFICATE-1
CERTIFICATE-2
ACKNOWLEDGEMENT
ABSTRACT
PREFACE
PAPERS PUBLISHED / COMMUNICATED TO JOURNALS
PAPERS PRESENTED IN SEMINARS
CONTENTS
LIST OF TABLES
LIST OF FIGURES
1. THEORIES, KINETICS AND TECHNIQUES OF CRYSTAL GROWTH
1.1 Introduction
1.2 Theories of Nucleation
1.2.1 Homogeneous Nucleation
1.2.2 Heterogeneous Nucleation
1.2.3 Gibb’s formula
1.2.4 Thermodynamics of crystal growth
1.2.5 The SOS model
1.2.6 The Equilibrium crystal shape
1.3 Kinetics of crystal growth
1.3.1 The Wulff construction
1.3.2 Diffusion theory
1.3.3 Kossel, Stranski and Volmer (KSV) theory
1.3.4 Screw dislocation (BCF) theory
1.3.5 The Jackson α -factor�
1.3.6 Periodic bond chain theory
1.3.7 The Muller- Krumbhar model
1.3.8 Frank’s model
1.4 Crystal growth techniques
1.4.1 Introduction
1.4.2 Growth from the melt
1.4.3 Growth from the vapour phase
1.4.4 Growth from solutions
References
2. CRYSTAL GROWTH BY GEL METHOD ANDTECHNIQUES USED FOR CHARACTERIZATION
2.1 Introduction
2.2 Gel- a medium for crystal growth and advantages of Gel Technique.
2.3 Gelling mechanism and gel structure
2.4 Basic growth procedures
2.4.1 The chemical reaction method
Fig. 2.1 & 2.2
Fig 2.3 Double tube growth systems with possibilities for pH and composition control in the growth region
2.4.2 The Complex dilution method
2.4.3 The Solubility reduction method
2.5 Crystallization process in gel medium
2.6 Nucleation control
2.7 Effect of various parameters
2.7.1 Effect of pH on gel setting time
2.7.2 Effect of gel density
2.7.3 Effect of gel aging
2.7.4 Effect of gel concentration of reactants
2.8 Objectives and scope of the present work
2.8.1 Phosphate crystal
Fig 2.8
2.8.2 Effect of neodymium doping
2.9 Introduction
2.10 X-ray powder diffraction analysis
Fig. 2.10. X-ray powder diffractometer
2.11 Fourier Transform Infra Red Spectroscopy
Fig. 2.11. FTIR Spectrophotometer
2.12 Thermal Analysis
Fig 2.12 Schematic illustration of a DTA cell
Fig 2.13 Diagram of a power compensated differential scanning calorimeter
2.13 Energy Dispersive Spectrum Analysis
2.14 X-Ray Fluorescence Spectroscopy
2.15 Optical Microscopy
Fig 2.15 Optical Microscope
2.16 Scanning Electron Microscopy
Fig 2.16 How the SEM Works
Fig 2.17 SEM Ray Diagrams
2.17 UV-Visible spectral studies
Fig 2.18 Diagram of a single-beam UV/vis spectrophotometer
2.18 Microwave dielectric studies
References
3. GROWTH AND CHARACTERIZATION OF PURE ANDNEODYMIUM DOPED CALCIUM HYDROGENPHOSPHATE SINGLE CRYSTALS
3.1 Introduction
3.2 Growth kinetics
3.2.1 Calcium hydrogen phosphate [CHP] crystals
FIG 3.1 & 3.2
3.2.2 Neodymium doped Calcium hydrogen phosphate
FIG 3.3 & 3.4
3.3 Characterization
3.3.1 Introduction
3.3.2 X-ray powder diffraction analysis
3.3.3 Fourier Transform Infra Red [FTIR] Spectroscopy
3.3.4 Thermal Analysis
3.3.5 X-Ray Fluorescence Spectroscopy
3.4 Conclusions
References
4. GROWTH AND CHARACTERIZATION OF PURE ANDNEODYMIUM DOPED BARIUM HYDROGENPHOSPHATE SINGLE CRYSTALS
4.1. Introduction
4.2. Growth kinetics
FIG 4.1 TO 4.3
4.3 Characterization
Fig 4.13 TGA & DTA of Nd: BHP
4.4 Conclusions
References
5. GROWTH AND CHARACTERIZATION OF PURE ANDNEODYMIUM DOPED STRONTIUM HYDROGENPHOSPHATE SINGLE CRYSTALS
5.1 Introduction
5.2. Growth kinetics
FIG 5.1 TO 5.4
5.3 Characterization
Fig 5.9 TGA & DTG of SHP
FIG 5.10 TGA & DTA of SHP, 5.11 DSC of SHP
5.4 Conclusions
References
6. MICRO TOPOGRAPHY, OPTICAL ANDDIELECTRIC STUDIES
6.1 Surface Morphology by Optical Microscopy
6.1.1 Introduction
6.1.2 Calcium hydrogen phosphate crystals
6.1.3 Neodymium doped calcium hydrogen phosphate crystals
FIGURES
6.1.4 Barium hydrogen phosphate crystals
6.1.5 Neodymium doped barium hydrogen phosphate crystals
FIGURES
6.1.6 Strontium hydrogen phosphate crystals
6.1.7 Neodymium doped strontium hydrogen phosphate crystals
FIGURES
FIGURES
6.2 Surface Morphology by Scanning Electron Microscopy
6.2.1 Introduction
6.2.2 Pure and neodymium doped calcium hydrogen phosphate crystals
6.2.3 Pure and neodymium doped barium hydrogen phosphate crystals
6.2.4 Pure and neodymium doped strontium hydrogen phosphate crystals
FIGURES
FIGURES
6.3 Dislocation studies
6.3.1 Introduction
6.3.2 Neodymium doped calcium hydrogen phosphate crystals
6.3.3 Neodymium doped barium hydrogen phosphate crystals
6.3.4 Conclusions
6.4 UV-Visible Absorption Studies
6.4.1 Introduction
6.4.2 Neodymium doped calcium hydrogen phosphatecrystals
6.4.3 Neodymium doped barium hydrogen phosphate crystals
6.4.4 Neodymium doped strontium hydrogen phosphate crystals
6.4.5 Conclusions
6.5 Microwave Dielectric studies
6.5.1 Introduction
6.5.2 Principle and theory of cavity perturbation technique
6.5.3 Complex permittivity of materials
6.5.4 Conductivity of materials
6.5.5 Experimental set up of cavity perturbation technique
6.5.6 Dielectric constant measurements
6.5.7 Conclusions
References
7. LIESEGANG RING PHENOMENON AND THEEFFECT OF DOPANT IN THE RING SYSTEM
7.1 Introduction
7.2 Early Work
7.3. Recent works
7.4 Generic laws
7.5 Experimental method
7.6 Effect of various parameters
7.7 Verification of generic laws
7.8 Estimation of Diffusion coefficient
7.9 Conclusions