• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 131
 
Full Screen

  • Title
  • CERTIFICATE
  • DECLARATION
  • Aknowledgements
  • CONTENTS
  • 1. Introduction
  • 1.Amature rubber plantations
  • 2. Review of Literature
  • 2.1. Crop improvement in H. brasiliensis: Conventional methods, achievements and constraints
  • 2.2. Biotechnological approaches for crop improvement in Hevea brasiliensis
  • 2.2.1. Marker assisted selection
  • 2. 2.2. Development of in vitro plant regeneration system
  • 2. 2.3. Somatic embryogenesis as a means of micropropagation
  • 2.2.4. Somatic embryogenesis Hevea brasiliensis
  • 2. 2. 5 (1) Factors influencing plant regeneration via somatic embryogenesis
  • 2.3. Plant genetic transformation
  • 2.3.1. Agrobacterium tumefaciens: a natural vector for genetic transformation
  • 2.3.2. Plant genetic transformation: an overview
  • 2. 3. 3. Genetic transfomiation in Hevea brasiliensis
  • 2. 3. 4. Control of oxidative stress tolerance in plants
  • 2. 3.4 (I) Role of SOD in abating oxidative stress
  • 2. 3. 5. Tapping panel dryness (TPD)
  • 2.3.5 (1) Hole of SOD in the prevention of TPD
  • 2. 3. 6. Development of transgenic plant for enviornmental stress tolerance
  • 3. Materials and methods
  • 3.1. Development of transgenic plants
  • 3. 1.1 Induction of callus
  • 2.Flower buds of Hevea
  • 3. 1. 2. Agrobacterium tumefaciens strain and binary vector.
  • 3.Binary vector pDU96.2412 used for genetic transformation.
  • 4.SOD, GUS and nptll genes between RB and LB of T-DNA region
  • 3. 1.3. Preparation of antibiotics
  • 3. 1. 4. Antibiotic kill curve tests
  • 3. 1. 5. Preparation of Agrobacterium culture for infection
  • 3. 1. 6. Agrobacterium infection and co-culture
  • 3. 1.7. Preparation of co-cultivation medium
  • 3. 1.8. Selection of transformed cell lines by GUS histochemical staining
  • 3. 1. 9. Callus proliferation and ernbryogenic callus induction
  • 3. 1.10. Somatic embryo induction
  • 3. 1.11 . Embryo maturation
  • 3. 1.12. Embryo germination and plant regeneration
  • 3. 1.13. Culture conditions
  • 3. I. 14. Acclimatization of the plants
  • 3.2. Molecular analysis of transgenic plants
  • 3. 2.1. Isolation of DNA from and control plants
  • 3. 2. 2. DNA quantification
  • 3. 2. 3. Isolation of plasmid DNA
  • 3. 2.4. Polymerase chain reaction
  • 3. 2. 5. Southern hybridization analysis
  • 3. 2. 5 (a) Restriction digestion of genomic DNA
  • 3. 2. 5 (b) Blotting of the DNA fragments
  • 3. 2. 5 (c) Preparation of labeled probe
  • 3. 2. 5 (d) Hybridization
  • 3. 2.5 (e) Blot washing and autoradiography
  • 3.3. SOD expression by Northern hybridization.
  • 3. 3. 1. lntroduction of stress
  • 3. 3.2. RNA isolation from leaf and callus samples
  • 3. 3. 2 (a) Electrophoresis of RNA
  • 3.3.2 (b) RNA blotting
  • 3. 3. 2 (c) Preparation of labeled probe and hybridization
  • 3.3. 2 (d) Washing and autoradiography
  • 3.4. Estimation of superoxide dismutase, peroxidase and catalase enzyme activities in transformed callus
  • 3.4.1. Induction of stress
  • 3.4. 2. Enzyme preparation
  • 3. 4. 3. Assay of Superoxide dismutase
  • 3. 4. 4. Estimation of Peroxidase enzyme activity
  • 3. 4. 5. Catalase enzyme assay
  • 3.4 6. Protein estimation
  • 4. Results
  • 4. 1. Development of Transgenic plants
  • 4.1.1. Induction of callus for Agrobacterium infection
  • 4.1.2. Identification of ideal explant stage for Agrobacterium infection
  • 4.1.3. Identification of the ideal antibiotic for the selection of transformed callus
  • 5.Callus formed two months after inoculation of immature anther.
  • 6.Proliferation of transformed callus in the selection medium.
  • 7.Histochemical staining for GUS expression in the callus.
  • 4. 1.4. Selection of transformed callus by GUS histochemical staining
  • 4. 1. 5. Callus proliferation and embryogenic callus induction
  • 4.1.6. Somatic embryo induction
  • 8.Transformed embryogenic callus
  • 9.Cluster of Globular embryos
  • 4.1.7. Effect of water and osmotic stress on embryo induction
  • 10.Effect of osmotic stress on callus fresh weight.
  • 4. 1.8. Embryo maturation
  • 11.Effect of water stress on callus fresh weight
  • 12.Somatic embryos under different developmental stages.
  • 13.Mature embryos with well-developed cotyledon
  • 4. 1. 9. Effect of amino acid on embryu maturation
  • 4. 1. 10. Effect of water and osrnotic stress on embryo maturation
  • 14.Effect of amino acids on embryo maturation
  • 4. 1. 11. Embryo germination and regeneration of transgenic plants
  • 15.Germinating embryos with shoot and root primodia
  • 16.Fully developed transgenic plantlet in culture tube
  • 17 Transgenic embryo showing GUS expression
  • 18. Transgenic plantlet showing GUS expression
  • 4. 1. 12. Acclimation of the plants and transplantation to soil
  • 19.Hardened transgenic plants.
  • 20.Transgenic plant growing in polythene bag
  • 4.2. Molecular analysis of transgenic plants
  • 4. 2. I. Polymerase chain reaction
  • 4.2.2. Southern hybridization analysis
  • 21.Detection of trangenes by PCR.
  • 4. 3. Northern hybridization analysis
  • 22.Southern hybridization of genomic DNA from transgenic plants
  • 23.Northern blot analysis after probing with Mn SOD cDNA.
  • 4.4. Estimation of superoxide dismutase, peroxidase and catalase enzyme activities in transformed callus
  • 4.4.1. Effect of water and PEG stress on SOD enzyme activity
  • 5. Discussion
  • 5.1. Development of transgenic plants
  • 5.2. Molecular confirmation of gene integration
  • 5.2.1. Polymerase chain reaction analysis
  • 5.2.2. Southern hybridization analysis
  • 5.3. SOD gene expression by Northern blot analysis
  • 5.4. Evaluation of superoxidc dismutase, peroxidase and catalase enzyme activities in transformed callus
  • 6. Summary and Conclusions
  • References
  • List of Figures
  • ABBREVIATIONS