HOME
Search & Results
Full Text
Thesis Details
Page:
234
Full Screen
TITLE
DECLARATION
CERTIFICATE
ACKNOWLEDGEMENT
PREFACE
CONTENTS
I. INTRODUCTION
1.1 Polymer blends
1.1.1 Mechanical blending
1.1.2 Solution casting
1.1.3 Latex blending
1.1.4 Mechanochemical blending
1.2 Interpenetrating network polymers (IPN)
1.2.1 Semi-interpenetrating network polymers (Semi- IPN)
1.2.2 Simultaneous interpenetrating network polymers (SIPN)
1.2.3 Inter penetrating elastomeric network polymers (IPEN)
1.3 Copolymers
1.3.1 Alternating copolymers
1.3.2 Random copolymers
1.3.3 Graft copolymers
1.3.3.1 Transfer grafting
1.3.3.2 Irradiation grafting
1.3.3.3 Chemical grafting
1.3.4 Block copolymers
1.3.4.1 Architectural variations of block copolymers
1.3.4.2 Morphology
1.3.4.3 Thermal properties
1.3.4.4 Processability
1.3.4.5 Optical properties
1.3.4.6 Permeability
1.3.4.7 Compatibilising properties
1.3.4.8 Chemical resistance
1.3.4.9 Surface active properties
1.3.4.10 Mechanical properties
1.4 Thermoplastic elastomers
1.4.1 Evolution, growth and applications of thermo plastic elastomers
1.4.2 Advantages over thermoset rubber
1.4.3 Classification of TPEs
1.4.3.1 EPDM / Polyolefin blends (TPO)
1.4.3.2 Natural rubber / Polyolefln blends (TPNR)
1.4.3.3 NBR / Polyolefin blends (TP-NBR)
1.4.3.4 PVC-based thermoplastic elastomers (TPVC)
1.4.3.5 Styrene-polydiene triblock copolymers
1.4.3.6 Copolyester-ether thermoplastic elastomers (TPEE)
1.4.3.7 Copolyamide-ether thermoplastic elastomers (TPAE)
1.4.3.8 Polyurethane thermoplastic elastomers (TPU)
1.5 Urethane chemistry
1.5.1 Characteristics of segmented polyurethanes
1.5.1.1 Morphological properties
1.5.1.2 Mechanical properties
1.5.1.3 Thermal properties
1.5.2 Polyurethane containing nonpolar soft segments
1.5.2.1 HTPB-based polyurethane block copolymers
1.5.2.2 Polyisobutylene-based polyurethane block copolymers
1.5.2.3 Polymyrcene and polysiloxane based polyurethane block copolymers
1.5.2.4 Natural rubber based polyurethane block copolymers
Scope and objectives
Objectives
Reference
II. EXPERIMENTAL
2.1 Materials
2.2 Experimental
2.2.1 Preparation of hydroxyl terminated liquid natural rubber (HTNR)
2.2.2 Determination of molecular weight of HTNR
2.2.3 Estimation of the hydroxyl groups
2.2.4 Determination of epoxy value
2.2.5 Determination of Iodine value
2.2.6 Synthesis of block copolyurethanes
2.2.7 Infra red spectral analysis
2.2.8 Differential scanning calorimetric analysis (DSC)
2.2.9 Thermogravimetric analysis (TGA)
2.2.10 Scanning electron microscopic analysis (SEM)
2.2.11 Stress-strain behaviour (Tensile tests)
2.2.12 Tear strength
2.2.13 Hardness
2.2.14 Polymer designation
Reference
III. RESULTS ACID DISCUSSION
3.1 Preparation of liquid natural rubber (HTNR]
3.1.1. Characterisation of the liquid NR
3.2 Block copolymerisation
3.3 Thermal analysis of the block copolymers
3.3.1 Differential scanning calorimetric analysis
3.3.1.1 DSC analysis of block copolymers with HTNR of molecular weight 8500
3.3.1.2 DSC analysis of block copolymers with HTNR of molecular weight 14200
3.3.1.3 DSC analysis of block copolymers with HTNR of molecular weight 22400
3.3.1.4 Effect of increasing hard segment content on thermal properties
3.3.1.5 Effect of chain extender diols
3.3.2 Thermogravimetric analysis
3.3.2.1 Thermogravimetric analysis of block copolymers with HTNR of molecular weight 8500
3.3.2.2 Thermogravimetric analysis of block copolymers with HTNR of molecular weight 14200
3.3.2.3 Thermogravimetric analysis of block copolymers with HTNR of molecular weight 22400
3.4 Tensile properties of the block copolymers
3.4.1 NR / EG block copolymers
3.4.1.1 Tensile properties of block copolymers prepared from EG and HTNR of molecular weight 8500
3.4.1.2 Tensile properties of block copolymers prepared from EG and HTNR of molecular weight 14200
3.4.1.3 Tensile properties of block copolymers prepared from EG and HTNR of molecular weight 22400
3.4.2 Tensile properties of NR / PG block copolymers
3.4.2.1 Tensile properties of block copolymers prepared from PG and HTNR of molecular weight 8500
3.4.2.2 Tensile behaviour of block copolymers prepared from PG and HTNR of molecular weight 14200
3.4.2.3 Tensile behaviour of block copolymers prepared from PG and HTNR of molecular weight 22400
3.4.3 Tensile properties of NR /1, 4-BDO block copolymers
3.4.3.1 Tensile properties of block copolymers prepared from 1, 4-BDO and HTNR of molecular weight 8500
3.4.3.2 Tensile properties of block copolymers prepared from 1, 4-BDO and HTNR of molecular weight 14200
3.4.3.3 Tensile properties of block copolymers prepared from 1, 4-BDO and HTNR of molecular weight 22400
3.4.4 Tensile properties of NR /1, 3-BDO block copolymers
3.4.4.1 Tensile properties of block copolymers prepared from 1, 3-BDO and HTNR of molecular weight 8500
3.4.4.2 Tensile properties of block copolymers prepared from 1, 3-BDO and HTNR of molecular weight 14200
3.4.4.3 Tensile properties of block copolymers prepared from 1, 3-BDO and HTNR of molecular weight 22400
3.4.5 Tensile properties of NR / BPA block copolymers
3.4.5.1 Tensile properties of block copolymers prepared from BPA and HTNR of molecular weight 8500
3.4.5.2 Tensile properties of block copolymers prepared from BPA and HTNR of molecular weight 14200
3.4.5.3 Tensile properties of block copolymers prepared from BPA and HTNR of molecular weight 22400
3.4.6 Effect of HTNR molecular weight on the tensile properties of the block copolymers.
3.4.6.1 NR / CG block copolymers
3.4.6.2 NR / PG block copolymers
3.4.6.3 NR /1, 3-BDO block copolymers
3.4.6.4 NR /I, 4-BDO block copolymers
3.4.6.5 NR / BPA block copolymers
3.4.7 Comparative account of tensile strength of block copolymers bearing different chain extender diols at specific composition
3.4.7.1 Tensile strength
3.4.7.2 Modulus of elasticity
3.4.7.3 Elongation at break
3.5 Fractography of the block copolymers
3.5.1 Fractography of the NR / EG block copolymers
3.5.1.1 NR1/EG (50/50)
3.5.1.2 NR2/EG (50/50)
3.5.1.3 NR3/EG (50/50)
3.5.2 Fractography of the NR / PG block copolymers
3.5.2.1 NR1 / PG (50/50)
3.5.2.2 NR2 / PG (50/50)
3.5.2.3 NR3 /PG (50/50)
3.5.3 Fractography of the NR /1, 3-butane diol block copolymers
3.5.3.1 NR 1/1, 3-BDO (40/60)
3.5.3.2 NR2/1, 3-BDO (50/50)
3.5.3.3 NR 3/1, 3-BDO (50/50)
3.5.4 Fractography of the NR/1, 4--butane diol block copolymers
3.5.4.1 NR, /1, 4-BDO (50150)
3.5.4.2 NR2/1, 4-BDO (50/50)
3.5.4.3 NR X11, 4-BDO (50150),
3.5.5 Fractography of the NR/BPA block copolymers
3.5.5.1 NR / BPA (50150)
3.5.5.2 NR2 / BPA (50/50)
3.5.5.3 NR3 / BPA (50/50)
3.5.6 A general assessment of fractography
3.6 Morphology of block copolymers
3.6.1 Morphological studies of NR / EG block copolymers
3.6.1.1 NR1 / EG (50/50)
3.6.1.2 NR2/EG (50/50)
3.6.1.3 NR / EG (50/50)
3.6.2 Morphological studies of NR / PG block copolymers
3.6.2.1 NR / PG (50150)
3.6.2.2 NR2 / PG (70/30)
3.6.2.3 NR / PG (50/50)
3.6.3 Morphological studies of NR / 1, 3-BDO block copolymers
3.6.3.1 NR1 / 1.3-BDO (40/60)
3.6.3.2 NR2 / 1, 3--BDO (50/50)
3.6.3.3 NR 3 / 1.3-BDO (50/50)
3.6.4 Morphological studies of NR / 1, 4-BDO block copolymers
3.6.4.1 NR1 / 1.4--BDO (50/50)
3.6.5 Morphological studies of NR / BPA block copolymers
3.6.5.1 NR1 / BPA (50 / 50)
3.6.5.2 NR2 / BPA (50/50)
3.6.5.3 NR3 / BPA (50/50)
3.6.6 General features of sample morphology
3.7 Tear strength
3.7.1 Tear strength of block copolymers prepared from HTNR of molecular weight-8500
3.7.2 Tear strength of block copolymers prepared from HTNR of molecular weight-14200
3.7.3 Tear strength of block copolymers prepared from HTNR of molecular weight-22400
3.7.4 A comparative study of the tear behaviour of the sample
Reference
IV. SUMMARY AND CONCLUSION
4.1 Preparation and characterisation of liquid NR (HTNR)
4.2 Block copolymerisation
4.3 Thermal analysis
4.3.1 Differential scanning calorimetric analysis
4.3.2 Thermogravimetric analysis
4.4 Tensile testing
4.4.1 Tensile strength
4.4.2 Modulus of elasticity
4.4.3 Elongation at break
4.5 Fracture studies
4.6 Morphology
4.7 Tear strength
4.8 Scope of further work
4.9 List of papers