• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 177
 
Full Screen

  • Title
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • 1 Introduction
  • 1.1 Types of antennas
  • 1.1.1 Wire antennas
  • 1.1.2 Aperture antennas
  • 1.1.2.1 Reflector antennas
  • 1.1.2.2 Plane reflectors
  • 1.1.2.3 Corner reflectors
  • 1.1.2.4 Curved reflectors
  • 1.1.3 Leaky wave antennas
  • 1.1.4 Transmission type antennas
  • 1.1.5 Antenna arrays
  • 1.1.6 Planar antennas
  • 1.2 Outline of the present work
  • 1.2.1 Chapter organisation
  • 1.2.1.1 Chapter 2
  • 1.2.1.2 Chapter 3
  • 1.2.1.3 Chapter 4
  • 1.2.1.4 Chapter 5
  • 1.2.1.5 Chapter 6
  • 2 Review of the past work in the field
  • 3 Methodology
  • 3.1 Experimental facilities
  • 3.1.1 HP83508 Sweep oscillator
  • 3.1.1.1 Start/stop mode
  • 3.1.1.2 CF/ΔF mode
  • 3.1.1.3 CW mode
  • 3.1.2 HP87438 reflection transmission test unit
  • 3.1.3 HP8411A harmonic frequency converter
  • 3.1.4 HP8410C/8510B network analyser with display unit
  • 3.1.5 Anechoic Chamber
  • 3.1.6 Antenna positioner and controlIer
  • 3.1.7 The X-Y recorder
  • 3.2 Fabrication of antennas under test
  • 3.2.1 The newly devoloped antennas
  • 3.2.1.1 The ETCR Antenna
  • 3.2.1.2 The PSACR Antenna
  • 3.3 The antenna holder and feeding facility
  • 3.4 Experimental set-up
  • 3.4.1 C-Band antenna
  • 3.5 Method of measurements
  • 3.5.1 Antenna impedance and VSWR
  • 3.5.2 Radiation pattern
  • 3.5.3 Direction gain
  • 3.6 Motivation for the present work
  • 4 Experimental results
  • 4.1 Introduction
  • 4.2 The ECTR antenna
  • 4.2.1 Dependence of βopt on width of the sub reflector and primary corner angle
  • 4.2.2 Studies on the radiation patterns of the ETCR antenna
  • 4.2.2.1 H-plane radiation patterns
  • 4.2.2.2 Effect of variation of width of sub reflector on axial gain and half power beam width
  • 4.2.2.3 Sidelobe Levels
  • 4.2.3 VSWR and impedance
  • 4.3 The periodic strip attached corner reflector (PSACR) antenna
  • 4.3.1 Factors affecting optimumn β
  • 4.3.2 Effect of strip parameters on the axial gain
  • 4.3.2.1 Number of strips
  • 4.3.2.2 Strip width
  • 4.3.2.3 Strip periodicity
  • 4.3.2.4 Strip Length
  • 4.3.3 Effect of variation of width of the primary reflector on axial gain
  • 4.3.4 Studies on the radiation patterns of the PSACR Antenna
  • 4.3.4.1 Copolar radiation pattern
  • 4.3.4.1.1 H-plane radiation pattern
  • 4.3.4.1.1.1 Single Lobe radiation patterns
  • Maximum sidelobe Levels
  • The HPBW
  • The twin lobe radiation pattern
  • 4.3.4.1.2 E-plane radiation pattern
  • 4.3.4.2 The cross-polar levels
  • 4.3.5 Study of the impedance parameters
  • 4.3.6 The C-band design
  • 4.4 Comparison between PSACR and ETCR
  • 4.5 Conclusion
  • 5 Theoretical analysis
  • 5.1 Introduction
  • 5.2 Method of analysis
  • 5.2.1 Geometrical optics field analysis (Image theoy)
  • 5.2.2 Diffraction field analysis - GTD approach
  • 5.2.2.1 Geometrical theory of diffraction for edges
  • 5.2.2.2 Diffraction by a slit
  • 5.3 Application of the new antennas
  • 5.3.1 The ETCR
  • 5.3.1.1 Case 1
  • 5.3.1.2 Case 2
  • 5.3.1.3 Case 3
  • 5.3.2 The PSACR
  • The GO field
  • The diffraction field
  • 5.3.2.1 Case 1.180 PSACR (axial single lobe)
  • 5.3.2.2 Case 2.180 PASCR (Twin lobe radiation pattern)
  • 5.3.2.3 Case 3.120˚ PSACR
  • 5.3.2.4 Case 4. 90˚ PSACR
  • 6 Conclusions
  • 6.1 Introduction
  • 6.2 Highlights of the results
  • 6.2.1 Experimental observations
  • (a) ETCR
  • (b) PSACR
  • 6.2.2 Theoretical conclusions
  • 6.2.3 Shortcomings
  • 6.3 Importance of the study
  • 6.4 Possible applications
  • 6.5 scope for further work
  • References
  • List of publications