• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 133
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • ABBREVIATIONS
  • CONTENTS
  • 1. INTRODUCTION
  • Organisation of the thesis
  • 2. POLYMER-SPPORTED REAGENTS: AN OVERVIEW
  • 2.1. Introduction
  • 2.2. Advantages and limitations of reactive polymers
  • 2.3. Design of polymer-supporled reagents
  • 2.4. Characterisation of functional polymers
  • 2.4.1 Chemical analysis
  • 2.4.2 Instrumental analysis
  • 2.5. Factors affecting the reactivity of polymer-supported reagents
  • 2.5.1 Nature and type of the polymer support
  • Fig.2.1. Schematic representation of linear and crosslinked polymers
  • Table 2.1. Effed of plymer matrix on the oxidation reaction
  • 2.5.2 Swelling nature of functional polymers
  • Table 2.2. Effect of crosslinking density on the oxidation of cyclohexanol catalysed by crosslinked PVP-iodine complex
  • 2.5.3 Effect of spacer handles
  • 2.5.4 Nature and degree of crosslinking
  • Fig.2.2. Schematic representation of polymer-matrix with: (a) rigid and (b) flexible crosslinking agents
  • Table 2.3. Nature of crosslinking on bromination reactions catalysed by bromine complexes of crosslinked PVP
  • 2.5.5 Microenvironmental effects
  • 2.5.6 Diffusional and molecular sieving effects
  • 2.6. Polymer bound oxidising reagents
  • 2.6.1 Redox polymers
  • Fig. 2.3. Structure of polymer-supported flavin reagent
  • 2.6.2 Polymer-supported peracids
  • 2.6.3 polymer-supported periodate
  • 2.6.4 Polymer-supported sulphur reagents
  • 2.6.5 Halogen containing reagents
  • Table 2.4. Elecbolytic side-chain oxidation of alkylbenzenes using polymeric electron carrier
  • 2.6.6 Polymer-supported chromium (VI) compounds
  • 2.6.7 Supported permanganate reagents
  • Fig.2.4. KMnO, complexed dicyclohexyl 18-crown-6
  • Table 2.5. Oxidation reactions using KMnO4 complexed crownether
  • 2.6.8 Miscellaneous oxidising reagents
  • 3. RESULTS AND DISCUSSION
  • 3.1 Preparation of crosslinkecl polystyrenes
  • 3.2 Chloromethylation of DVB-, EGDMA-, BDDMA- and HDODA crosslinked polystyrenes
  • Fig.3.1. Chlorine capacities of crosslinked chloromethylpolystyrenes
  • 3.3 Synthesis of various crosslinked polystyrene-supported polyoxyethylene
  • Fig.3.2. Schematic representation of polymeric pseudocrown ether
  • Fig.3.3. Polyoxyethylene capacities of various crosslinked chloromethyl polystyrenes
  • 3.4 Incorporation of potassium permanganate into various crosslinked polystyrene-supported polyoxyethylene (PSPOE)
  • Table 3.1. Details of the UV Spectra of KMnO4 complexed PSPOE
  • Fig.3.4. Effect of nature of crosslinking on the binding of potassium permanganate into 2 mol% crosslinked polystyrene-supported polyoxyethylene
  • 3.5 Swelling studies
  • Table 3.2a. Swelling studies of crosslinked chloromethylated polystyrene
  • Table 3.2b. Swelling studies of crosslinked PSPOE
  • Table 3.2c. Swelling studies of crosslinked PSPOE-KMnO4
  • 3.6 Oxidation reactions using various crosslinked PSPOE-KMn04 resins
  • 3.6.1 Oxidation reactions using D VB (macro) crosslinked PSPOE-KMn04 resin
  • Table 3.3 Oxidation of primary and secondary alcohols using 2 mol% DVB (macro) PSPOE-KMnO4 resin
  • Table 3.4. Oxidation of aldehydes using 2 mol% DVB (macro) PSPOE-KMnO4 resin
  • 3.6.2 Oxidation reactions using DVB (MACRO) -crosslinked PSPOE-KMn04 resin
  • 3.6.3 Oxidation reactions using EGDMA-crosslinked PSPOE-KMn04 resin
  • Table 3.5. Oxidation of primary and secondaly alcohols using 2 mol% DVB (macro) PSPOE-KMnO4 resin
  • Table 3.6.Oxidation of aldehydes using 2 mol% DVB (micro) -PSPOE-KMnO4 resin
  • Table 3.7. Oxidation of primay and secondary alcohols using 2 mol% EGDMA-PSPOE-KMnO4 resin
  • Table 3.8. Oxidation of aldehydes using 2 mol% EGDMA-PSPOE-KMnO4 resin
  • 3.6.4 Oxidation reactions using BLDMA-crosslinked PSPOE-KMn04 resin
  • 3.6.5 Oxidation reactions using HDODA-crosslinked PSPOE-KMn04 resin
  • Table 3.9. Oxidation of primary and secondary alcohols using 2% 1, 4-BDDMA-PSPOE-KMn04 resin
  • Table 3.10. Oxidation of aldehydes using 2% 1, 4-BDDMA-PSPOE-KMnO4 resin
  • Table 3.11. Oxidation of primary and secondary alcohols using 1, 6-HDODA-PSPOE-KMnO4 resin
  • Table 3.12. Oxidation of aldehydes using 2%1, 6-HDODA-PSPOE-KMnO4 resin
  • 3.7 Characterisation of the products
  • 3.8 Effect of reaction conditions on the course of oxidation reactions
  • 3.8.1 Solvent effect
  • Fig.3.5. Effect of solvent on the extent of reaction of 2 mol% DVB (macro) crosslinked PSPOE KMnO4 resin
  • Fig.3.6. Effect of solvent on the extent of reaction of 2 mol% DVB (macro) crosslinked PSPOE KMnO4 resin
  • Fig.3.7. Effect of solvent on the (extent of reaction of 2 mol% EGDMA-crosslinked PSPOE KMnO, resin
  • Fig.3.8. Effect of solvent on the extent of reaction of 2 mol% BDDMA-crosslinked PSPOE KMnO4 resin
  • Fig.3.9. Effect of solvent on the extent of reaction of 2 mol% HDODA-crosslinked PSPOE KMnO4 resin
  • 3.8.2 Temperature effect
  • Fig.3.10. Effect of temperature on the extent of reaction of 2 mol% DVB (macro) crosslinked PSPOE -KMnO4 resin
  • Fig.3.11. Effect of temperature on the extent of reaction of 2 mol% DVB (macro) crosslinked PSPOE-KMnO4 resin
  • Fig.3.12. Effect of temperature on the extent of reaction of 2 mol% EGDMA-crosslinked PSPOE-KMnO4 resin
  • Fig.3.13. Effect of temperature on the extent of reaction of 2 mol% BDDMA-crosslinked PSPOE-KMnO4 resin
  • Fig.3.14. Effect of temperature on the extent of reaction of 2 mol% HDODA-crosslinked PSPOE-KMnO4 resin
  • 3.8.3 Effect of molar excess of the reagent
  • Fig.3.15 Effect of molar excess on the extent of reaction of 2 mol% DVB (macro) crosslinked PSPOE-KMnO4 resin
  • Fig.3.16. Effect of molar excess on the extent of reaction of 2 mol% DVB (macro) crosslinked PSPOE-KMnO4 resin
  • Fig.3.17. Effed of molar excess on the extent of reaction of 2 mol% EGDMA-crosslinked PSPOE-KMnO4 resin
  • Fig.3.18. Effect of molar excess on the extent of reaction of 2 mol% BDDMA-crosslinked PSPOE-KMnO4 resin
  • Fig.3.19. Effect of molar excess on the extent of reaction of 2 mol% HDODA-crosslinked PSPOE-KMnO4 resin
  • 3.9 Stability and shelf life of the reagents
  • Table 3.13. Stability of various PSPOE-KMnO4 resins
  • 3.10 Recycling and reuse of the reagents
  • Table 3.14. Recyclability of KMnO4 complexed resin
  • 4. EXPERIMENTAL
  • 4.1 General
  • 4.2 Preparation of 2% DVB-, EGDMA-, BDDMA- and HDODAcrosslinked polystyrenes: General procedure
  • 4.3 Chloromethylation of crosslinked polystyrene: General procedure
  • 4.4 Preparation of polystyrene-supported polyoxyethylene (PSPOE)
  • 4.5 Synthesis of polystyrene-supported permanganates
  • 4.6 Swelling studies
  • 4.7 Oxidation studies using the potassium permanganate complexes of crosslinked polystyrene-supported polyoxyethylene
  • 4.8 Monitoring the course of the oxidation reaction
  • 4.9 Recycling and reuse of the spent polymeric permanganate resins
  • 5. SUMMARY AND OUTLOOK
  • REFERENCES