• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 195
 
Full Screen

  • Title
  • DECLARATION
  • CERTIFICATE
  • ACKNOWLEDGEMENT
  • CONTENTS
  • ABBREVIATIONS
  • 1. Introduction and review of literature
  • INTRODUCTION
  • REVIEW OF LITERATURE
  • I. Molecular biology of cancer
  • A. Genes and Cancer
  • 1. Proto-oncogenes
  • 2. Tumor suppressor genes
  • 3. Repair genes
  • 4. Chromosomal aberrations
  • B. Cancer and cell growth regulatory pathways
  • 1. Growth factors (GPs)
  • 2. Cell cycle check points.
  • II. Etiology of Cancer
  • A. Carcinogenesis
  • 1) Physical insults (Radiation)
  • a) Ultraviolet radiation
  • b) Ionizing Radiation
  • 2) Biological insults (Viral carcinogenesis)
  • 3) Chemical insults (Chemical carcinogenesis)
  • a) Organic carcinogens
  • i) Alkylating agents
  • ii) Aralkylating agents
  • iii) Arylhydroxylamines
  • b) Inorganic compounds
  • (i) Tumor initiation
  • ii) Tumor promotion
  • iii) Tumor progression
  • III. Free radicals, Antioxidants and Cancer
  • IV. Cancer Therapy
  • a) Surgery
  • b) Radiation Therapy
  • c) Chemotherapy
  • Chemotherapeutic agents
  • 1) Non-plant derived anticancer agents
  • a) Alkylating agents
  • b) Antimetabolites
  • c) Antitumor antibiotics
  • d) Enzymes
  • f) Cisplatin
  • g) Procarbazine
  • h) Hydroxyurea
  • i) Amsacrine
  • 2) Plant Derived Anticancer Agents
  • 1. Vinca alkaloids
  • 2. Homoharringonin (BHT)
  • 3. Podophyllotoxins
  • 4. Maytansine
  • 5. Taxanes
  • 6. Camptothecin
  • V. Production of anti-cancer secondary metabolites through tissue culture
  • 2. Materials and methods
  • 2.1. Materials
  • 2.1.1. Plant Materials
  • 2.1.2. Chemicals
  • 2.1.3. Instruments
  • 2.1.4. Cell lines
  • 2.1.5. Animals
  • 2.2. Methods
  • 2.2.1. Explants and surface sterilization
  • 2.2.2. Preparation of nutrient media
  • 2.2.3. Culture Environment
  • 2.2.4. Culture initiation and callus culture establishment
  • 2.2.5. Callus growth measurement
  • 2.2.6. Preparation of the plant extract
  • 2.2.7. Preparation of the callus extracts
  • 2.2.8 Preparation and application of spray reagents
  • 2.2.9. Extraction of crude camptothecin (CPT)
  • 2.2.10. Isolation of CPT
  • 2.2.11. Crystallization of CPT
  • 2.2.12. TLC analysis
  • 2.2.13. Melting point
  • 2.2.14. UV-visible absorption spectra
  • 2.2.15. IR-spectra
  • 2.2.16. High performance liquid chromatography (HPLC)
  • 2.2.17. Electron Spray Mass Spectrometry (ESMS)
  • 2.2.18. H-nuclear magnetic resonance
  • 2.2.19. Maintenance of Experimental animals
  • 2.2.20. Maintenance of tumour cells in mice
  • 2.2.21. Maintenance of cell lines in tissue culture
  • 2.3. Anti tumor studies
  • 2.3.1 Short term in vitro cytotoxocity
  • 2.3.2 Long term chemosensitivity
  • 2.3.3 MTT assay
  • 2.3.4 3H-thymidine incorporation assay
  • 2.3.5 Ascites tumor model
  • 2.3.6 Solid tumor model
  • 2.4 Antioxidant property in vitro
  • 2.4.1 Superoxide scavenging activity
  • 2.4.2 Hydroxyl radical scavenging activity
  • 2.4.3 Lipid peroxide inhibition activity
  • 2.4.4 Anti-inflammatory activity
  • 2.4.5 Evaluation of anti carcinogenic activity of the extracts
  • 2.4.6. Histopathology
  • 2.5. Statistical analysis
  • 3. Isolation and quantification of camptothecin from.Nothapodytes foetida
  • 3.1 Introduction
  • 3.2 Materials and methods
  • 3.2.1 Plant material
  • 3.2.2 Preparation of the extract
  • Fig: 3.1. Nothapodyes foetida (White) Slummer.
  • 3.2.3 Crystallization of CPT
  • 3.2.4 Determination of CPT melting point
  • 3.2.5 uv-visible spectrum
  • 3.2.6 HPLC analysis and quantification
  • 3.3 Results and discussion
  • Fig 3.2 Schematic representation tor the isolation of CPT from plantparts of Nothapodytes foetida
  • 4. Camptothecin from callus cultures of Nothapodytes foetida
  • 4.1 Introduction
  • 4.2 Materials and methods
  • 4.2.1 Explants
  • 4.2.2 Surface sterilization
  • 4.2.3 Callus subculture
  • 4.2.4 Callus growth measurement
  • 4.2.5 Extraction of CPT and HPLC analysis
  • 4.2.6 Purification and characterization of CPT
  • Fig 4.1 Camptothecin extraction from callus
  • 4.2.7 Long term Cytotoxicity of the isolated CPT
  • 4.3 Results
  • 4.3.1 Callus induction and callus growth
  • Fig 4.2
  • (A) An Immature embryo of N.foietida
  • (B) 90 day old callus shows leafy out growth in the modified MS medium supplemented with NAA 2mg/I and KN 0.5 mg/I
  • (C, D, E) Plantlets grown in the MS medium supplemented with NAA 2 mg/I and BA 0.5 mg/I
  • 4.3.2 Thin layer chromatography
  • 4.3.3 uv absorption
  • 4.3.4 HPLC analysis
  • 4.3.5 IR spectra of purified CPT
  • 4.3.6 Mass spectra
  • 4.3.7 H-NMR NMR spectra
  • 4.3.8 Cytotoxicity
  • 4.4 Discussion
  • 5. Camptothecin from tissue cultures of Ervatamia heyneana
  • 5.1 Introduction
  • 5.2 Materials and Methods
  • 5.2.1 Plants
  • 5.2.2 Surface sterilization of the explant and culture
  • 5.2.3 Callus growth measurement
  • 5.2.4 Callus subculture
  • 5.2.5 Callus extract preparation
  • 5.2.6 Determination of chemosensitivity of the extract on L929 cells
  • 5.2.7 Anti-tumor activity of iu vitro derived root extract
  • 5.2.8 TLC analysis
  • 5.2.9 uv visible absorption spectra
  • 5.2.10 HPLC analysis
  • 5.3 Results
  • 5.3.1 Surface sterilization
  • 5.3.2 Culture initiation
  • 5.3.3 Influence of auxins
  • 5.3.4 Influence of auxins and cytokinins
  • Fig: 5.1 Ervatamia heyneana (Wall) Cook
  • Fig 5.2
  • (A) Internode-derived callus in MS medium containing 2, 4-D2 mg/l and KN 0.5 mg/l.
  • (B) Rhizogenesis in seed embryo cultured in MS medium Supplemented with NAA 4 mg/l and KN 0.5m g/l
  • (C) Plantlets in seed internode callus cultured tn NAA 2mg/l and BA 0.5 mg/l
  • (D) Plantlets and rhizognesis in MS medium supplemented with NAA 2mg/l and BA 0.5 mg/l
  • (E) Rhizognesis in seed embryo cultured in MS liquid medium Supplemented with NAA 4mg/l and KN 0.5 mg/I
  • (F) Somatic embryoids in seed embryo cultured in MS medium containing 2, 4-D 3 mg/l and KN 0.5 mg/l
  • Fig 5.3 Leaf disc explant after 30 dav culture in MS medium supplemented with 2, 4-D 2mg/I & BN 0.5 mg/I
  • 5.3.5 Callus growth
  • 5.3.6 Anticancer activity of the extracts on L929 cells
  • 5.3.7 in vivo anti-tumor propeq of the extract
  • 5.3.8 TLC analysis
  • 5.3.9 uv-visible absorption spectra
  • 5.3.10 HPLC analysis
  • 5.4 Discussion
  • 6. Study on antioxidant and anticancer activity of Emilia sonchifolia
  • 6.1 Introduction
  • 6.2 Materials and methods
  • 6.2.1 Preparation of crude extract from plant
  • 6.2.3 Animals
  • 6.2.4 Superoxide scavenging activity
  • 6.2.5 Hydroxyl radical scavenging activity
  • 6.2.6 Anti-inflammatory activity
  • 6.2.7 In vitro cytotoxicity of the extract
  • 6.2.8 Effect of methanollic extract on ascites tumor in mice
  • 6.2.9 Effect of methanolic extract on solid tumor development
  • 6.2.10 Effect of methanolic extract on DNA synthesis
  • 6.2.11 Partial purification of E.sonchifolia extract by XAD amberlite column
  • 6.2.12 Phytochemical analysis of the active fraction
  • 6.2.13 uv visible absorption of the active fraction
  • 6.3 Results
  • 6.3.1 Antioxidant and anti-inflammatory activity of the methanolic extract of E. sonchifolia
  • 6.3.2 Cytotoxic and antitumor property
  • 6.3.3 Effect of methanolic extract on DNA synthesis
  • 6.3.4 Antioxidant and anticarcinogenic activity of partially purified extract
  • 6.4 Discussion
  • 7. In vitro antioxidant and cytotoxic Properties of Callus and plantlet cultures of Emilia sonchifolia
  • 7.1 Introduction
  • 7.2 Materials and methods
  • 7.2.1 Surface sterilization and culture medium
  • 7.2.2 Callus culture
  • 7.2.3 Rooting of regenerated shoots
  • 7.2.4 Establishment of regenerated plantlets
  • 7.2.5 Preparation of the extracts
  • 7.3 Antioxidant property
  • 7.3.1 Superoxide scavenging activity
  • 7.3.2 Hydroxyl radical scavenging activity
  • 7.3.3 Lipid peroxidation inhibition
  • 7.4 In vitro cytotoxicity of the extracts.
  • 7.5 TLC analysis of the extracts
  • 7.6 Results
  • Fig 7.1 Shoot multiplication in E.sonchifolia cultured in MS medium supplemented with IAA 2 mg/l and BA mg/l
  • Fig 7.2 Leaf disc derived callus in MS medium supplemented with 2, 4-D 2 mg/l and KN 0.5 mg/l
  • DISCUSSION
  • 8. Summary and Conclusion
  • APPENDIX
  • References
  • Papers published