• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 265
 
Full Screen

  • TITLE
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • Symbols & Abbreviations
  • CONTENTS
  • Preface
  • I Introduction to Explosives and Propellants
  • 1.1. Background and History of Explosives
  • 1.1.1 Nitro Explosives
  • 1.1.2. Liquid Oxidizers and Explosives
  • 1.2. Solid Rocket Propellants
  • 1.2.1. Propellant Types
  • 1.2.1.1. Single Base Propellants
  • 1.2.1.2. Double and Triple Base Propellants
  • 1.2.1.3. Composite Modified Double Base Propellants.,
  • 1.2.1.4. Composite Propellants
  • 1.3. Development of Composite Propellants
  • 1.4. Major Components of a Composite Solid Propellant
  • 1.4.1. Oxidizer
  • 1.4.2. Binder
  • 1.4.3. Metallic Fuel
  • 1.4.4. Cross-linking Agents and Curing Agents
  • 1.4.5. Plasticizers
  • 1.4.6. Other Additives
  • 1.5. Basic Requirements for High Performance
  • 1.6. Ehergetic Materials - Currently in Use
  • 1.7. New High-energy Oxidizers and Binders
  • 1.8. Development of Dinitramide Based Energetic Materials
  • 1.9. Formulations of New Generation Solid Propellants
  • 1.10. Preparation of Energetic Nitro Compounds by Nitration
  • 1.10.1. Dinitrogen Pentoxide
  • 1.10.2. Nitronium Salts
  • 1.10.3. Nitration with HNO3- H2SO4
  • 1.11. An Overview on the Synthetic Routes and Properties of Ammonium Dinitramide (ADN) and other Dinitramide Salts
  • 1.12. Dinitrarnidic Acid and its Salts
  • 1.13. Methods of Preparation of Dinitramide
  • 1.14. Synthesis of Alkyl Dinitramines
  • 1.15. Chemical and Physical Properties of Dinitramide Salts
  • 1.16. Other Dinitramide Salts
  • 1.17. Conclusions
  • 1.18. References
  • 2 Experimental Methods and Characterization Techniques
  • 2.1. Spectroscopic Analysis
  • 2.1.1. IR Spectral Studies
  • 2.1.2. UV Spectral Studies
  • 2.2. Chromatographic Analysis
  • 2.2.1. Ion Chromatographic Studies
  • 2.3. Elemental Analysis
  • 24. Chemical Analysis
  • 2.4.1. Analysis of Nitric Acid Content in Concentrated Nitric Acid
  • 2.4.2. Analysis of HNO2 Content in Concentrated Nitric Acid
  • 2.5. Thermal Analysis
  • 2.5.1. Differential Scanning Calorimetry (DSC)
  • 2.5.2. Thermogravimetric Analysis
  • 2.6. Calculation of Molar Extinction Co-efficient forADN
  • 2.6.1. Theory
  • 2.6.2. Experimentai
  • 2.6.2.1. Materials and Methods
  • 2.6.3. Determination of Molar Extinction Coefficient of ADN in Water
  • 2.6.4. Determination of Molar Extinction Co-efficient of ADN in Methanol
  • 2.6.5. Determination of Molar Extinction Co-efficient of AND in Acetontrile
  • 2.6.6. Determination of Molar Extinction Co-efficient of KDN in Water
  • 2.7. Materials used and Methods
  • 2.8. References
  • 3 Synthesis and Characterization of Dinitramide Salts
  • 3.1. Synthesis and Characterization of Ammonium Dinitramide (ADN)
  • 3.2. Experimental
  • 3.2.1. Materials
  • 3.2.2. Synthesis of Ammonium Dinitramide (ADN)
  • 3.2.3 Separation of Ammonium Dinitramide
  • 3.3. Results and Discussion
  • 3.3.1. Nitration of Ammonium Sulphamate (AS) using Mixed Acids.
  • 3.3.2. Derivation of a Reaction Scheme
  • 3.3.3. Spectral and thermal analysis of Ammonium dinitramide
  • 3.3.4. Effect of Variation of Acid Ratio on the Yield of Ammonium Dinitramide
  • 3.3.5. The Effect of Nitric Acid on the Dinitramidic Acid Yield
  • 3.3.6. The Effect of Sulphuric_ Acid Ratio on the Rate of Formation of Dinitramidic Acid
  • 3.3.7. The Effect of Water on the Yield of Ammonium Dinitramide.
  • 3.3.8. The Effect of Variation of Temperature
  • 3.3.9. The Effect of Using Solvents as Nitrating Medium
  • 3.3.10 Summary of Yield of ADN for Different Ratios of SAINA
  • 3.4. Synthesis of Potassium Dinitramide (KDN)
  • 3.5. Experimental
  • 3.5.1. Materials
  • 3.5.2. Method 1
  • 3.5.3. Method 2
  • 3.5.4. Separation of Potassium Dinitramide
  • 3.6. Results and Discussion
  • 3.6.1. Characterization of Potassium Dinitramide
  • 3.7. Synthesis of Guanylurea Dinitramide (GUDN)
  • 3.8. Experimental
  • 3.8.1. Materials
  • 3.8.2. Preparation of Guanylurea Sulphate
  • 3.8.3. Preparation of Guanylurea Dinitramide
  • 3.9. Results and Discussion
  • 3.9.1. Characterization of GUDN
  • 3.10. Preparation of Tetramine Cu (II) Dinitramide
  • 3.11. Experimental
  • 3.11.1. Materials
  • 3.11.2. Synthesis of Tetramine Cu (II) Dinitramide
  • 3.12. Results and Discussion
  • 3.13. Emulsion Crystallization of Ammonium Dinitramide (ADN)
  • 3.14. Experimental
  • 3.14.1. Materials
  • 3.15. Emulsion Crystallization Process
  • 3.16. Results and Discussion
  • 3.16.1. Particle Size Analysis
  • 3.16.2. Analysis of Emulsion Crystallized ADN
  • 3.17. Conclusions
  • 3.18. References
  • 4 Adsorption of Ammonium Dinitramide (ADN) from Aqueous Solutions
  • 4.1. Adsorption of ADN on Powdered Activated Charcoal (PAC) & Granular Activated Charcoal (GAC)
  • 4.2. Introduction
  • 4.3. Experimental
  • 4.3.1. Materials
  • 4.3.2. Instruments
  • 4.3.3. Adsorption Experiments
  • 4.4. Results and discussion
  • 4.4.1. Effect of Adsorption Time for PAC & GAC
  • 4.4.2. Adsorption Isotherms
  • 4.4.2.1. Langmuir Isotherm
  • 4.4.2.2. Freundlich Isotherm
  • 4.4.3. Results of Column Adsorption Model for the adsorption of ADN over PAC
  • 4.4.4. Desorption of ADN from PAC
  • 4.4.5. Determination of Adsorption Rate Constants for PAC and GAC
  • 4.5. Conclusions
  • 4.6. References
  • 5 Investigations on the Physical, Chemical and Electrochemical Prope Ammonium Dinitramide (ADN)
  • 5.1. Determination of Purity of Ammonium dinitramide (ADN)
  • 5.2. Chemical Methods of Analysis
  • 5.2.1. Oxidation
  • 5.2.2. Kjeldahl Method
  • 5.3. Ion-chromatography (IC) analysis and Non-aqueous Titrimetry
  • 5.3.1. Calibration for Nitrate Ions in IC
  • 5.3.2. Detection of Anionic Species in IC
  • 5.3.3. Analysis of NO3 and NO 4 ions in ADN
  • 5.4. Analysis of ADN by UV method
  • 5.4.1. Effect of AN on the Absorption Spectrum of ADN
  • 5.4.1.1. Methods
  • 5.4.2. Results and Discussion
  • 5.5. Purity Determination of ADN by DSC
  • 5.5.1. Qualitative Evaluation
  • 5.5.2 Quantitative Evaluation
  • 5.6 Decomposition of ADN in Neutral and Aqueous Acidic Solutions
  • 5.7. Experimental
  • 5.7.1. Materials
  • 5.7.2. Methods
  • 5.8. Results and Discussion
  • 5.8.1. Decomposition of Aqueous Solutions of ADN
  • 5.8.2. Decomposition of Aqueous Acidic Solutions of ADN
  • 5.9. Moisture Absorption Studies on Ammonium Dinitramide (ADN)
  • 5.10. Experimental
  • 5.10.1. Materials
  • 5.10.2. Methods
  • 5.11. Results and Discussion
  • 5.11.1. Determination of absorption rate constants
  • 5.12. Solubility of ADN in Different Solvents
  • 5.13. Experimental
  • 5.13.1. Materials
  • 5.13.2. Methods
  • 5.14. Results and Discussion
  • 5.15. Cyclic Voltammetric Studies on Potassium Dinitramide and Dinitramidic acid Solutions
  • 5.16. Experimental
  • 5.16.1. Materials
  • 5.16.2. Methods
  • 5.17. Results and Discussions
  • 5.17.1. Electrochemical Studies of Potassium Dinitramide
  • 5.17.2. Electrochemical Studies of Dinitramidic acid (DNA) solutioon
  • 5.17.3. Mechanism of Redox Process of Dinitramide
  • 5.18. Conclusions
  • 5.19. References
  • 6 Thermal Decomposition Characteristics of Dinitramide Salts and their Mixtures
  • 6.1. Decomposition of ADN Under Isothermal Conditions -A TG-MS Study
  • 6.2. Experimental
  • 6.2.1. Materials
  • 6.2.2. Methods
  • 6.3. Results and Discussion
  • 6.3.1. Analysis of Evolved gases by mass spectrometry
  • 6.3.2. Kinetic Analysis
  • 6.3.2.1. Isothermal Kinetics
  • 6.3.2.2. Kinetic analysis using isoconversional method
  • 6.4. Thermal Decomposition Kinetic Studies on Ammonium Dinitramide (ADN) - Glycidyl Azide Polymer (GAP) System
  • 6.5. Experimental
  • 6.51. Materials
  • 6.5.2. ADN-GAP mixture
  • 6.5.3. Instrumental methods
  • 6.6. Results and Discussion
  • 6.6.1. DSC data
  • 6.6.2. TG data
  • 6.6.3. Kinetic analysis
  • 6.6.4. Kinetic analysis of TG data using Coats-Redfern equation.
  • 6.6.5. Kinetic compensation
  • 6.7. A Thermogravimetric Study on the Thermal Decomposition of Ammonium Dinitramide (ADN) - Potassium Dinitramide (KDN) mixtures.
  • 6.8. Experimental
  • 6.8.1. Materials
  • 6.8.2. KDN-ADN mixtures
  • 6.8.3. Instrumental methods
  • 6.9. Results and Discussion
  • 6.9.1. Phenomenological Data
  • 6.9.2 Kinetic analysis
  • 6.9.2.1. Kinetic analysis by Coats-Redfern method
  • 6.9.2.2. Kinetic analysis by MKN equation
  • 6.9.3. Rate constant (k) for the Decomposition
  • 6.10. Thermal Decomposition Characteristics of Guanylurea Dinitraride (GUDN)
  • 6.11. Experimental
  • 6.11.1. Materials
  • 6.11.2 Methods
  • 6.12. Results and Discussion
  • 6.12.1. Kinetic analysis of DSC data
  • 6.12.1.1. Ozawa Method
  • 6.12.1.2. Kissinger Method
  • 6.12.1.3. Refinement of Activation Energy from Ozawa method.
  • 6.13. The Phase Stabilization of Ammonium Nitrate by Potassium Dinitramide - A Differential Scanning Calorimetric Study
  • 6.14. Experimental
  • 6.14.1. Materials
  • 6.14.2. Methods
  • 6.15. Results and Discussion
  • 6.15.1. Phase Transition and Modifications
  • 6.15.2. Thermal Studies of AN Phase Stabilized with KDN
  • 6.16. Conclusions
  • 6.17. References
  • 7 Coating and Burn-rate Studies of Ammonium dinitramide (ADN)
  • 7.1. Coating of Spherical Ammonium dinitramide (ADN) particles
  • 7.2. Experimental
  • 7.2.1. Materials
  • 7.2.2. Methods
  • 7.3. Results and Discussion
  • 7.3.1. Coating of ADN using Ethyl cellulose
  • 7.3.2. Coating of ADN using PMMA
  • 7.3.3. Comparison of Moisture Absorption Profiles of ADN Coated with EC & PMMA
  • 7.4. Burn-rate Measurements of ADN / GAP / Al Propellant
  • 7.5. Experimental
  • 7.5.1. Materials
  • 7.5.2. Methods
  • 7.6. Results and Discussion
  • 7.6.1. Burning rate of ADN / GAP / AI propellant
  • 7.6.2. Results on Calculations of Specific Impulse
  • 7.7. Conclusions
  • 7.8. References
  • 8 Summary and Conclusions
  • APPENDIX 1 List of Publications