HOME
Search & Results
Full Text
Thesis Details
Page:
202
Full Screen
TITLE
CERTIFICATE
DECLARATION
ACKNOWLEDGEMENT
CONTENTS
ABBREVIATIONS
I. Introduction and Objectives
Reference
2. Solid Phase Peptide synthesis: An Overview of the Concepts an
2.1 Principle
2.2 The role of solid support
2.3 Recent approaches in solid phase peptide synthesis
2.3.a Peptide-resin linkage
2.3.b Protecting schemes
2.3.c C-terminal attachment
2.3.d Activation reagents
2.3.e Cleavage reagents
2.4 Difficult couplings in solid phase peptide synthesis
2.4.a Resin substitution
2.4.b Elevated temperature
2.4.c Insitu coupling additives
2.4.d Solvation of the peptide chain
References
3. Tri (propylene glycol) glycerolate-diacrylate Cross-linked Polystyrene:. Synthesis, Characterization and Functional Group Interconversions
3.1 Introduction
3.2 Results and discussion
3.2.a. Synthesis and charecterisation of tri (propylene glycol) glycerolate diacrylate cross-linked polystyrene (PS-TRPGGDA) support
Fig. 3: Possible Lipophilic Presentations of the PS-TRPGGDA System
3.2.b. Functional group interconversion
3.2.c. Swelling studies of PS-TRPGGDA supports
3.2.d. Chemical stability studies of PS-TRPGGDA support
3.2.e. Derivatization of PS-TRPGGDA resin
1. Synthesis of PS-TRPGGDA-HMPA resin
2. Synthesis of PS-TRPGGDA-HMPB resin
3. Synthesis of PS-TRPGGDA-Rink amide resin
3.3. Experimental
3.3.a. Materials
3.3.b. Synthesis of PS-TRPGGDA polymer
3.3.c. Swelling studies
3.3.d. Chemical stability studies
3.3.e. Functional group interconversion of the resin
1. Chlorination
2. Amination
3.3. f. Derivatization of PS-TRPGGDA supports
1. Preparation of PS-TRPGGDA-HMPA resin
2. Preparation of PS-TRPGGDA-HMPB resin
3. Preparation of PS-TRPGGDA-Rink amide resin
References
4. Optimization of Peptide Synthetic Conditions on TRPGGDA Cross-linked Polystyrene Supports
4.1 Introduction
4.2 Results and discussion
4.2.a C-Terminal amino acid incorporation to PS-TRPGGDA resin
4.2.b Optimization of Na-deprotection studies
1. Time dependent cleavage of Nα-Boc-Amino protection
2. Time dependent cleavage of Na-Fmoc-Amino protection
4.2.c Comparative study of solid phase amide bond formation using Leu-Aia-GIy-Val as model peptide
4.2.d Peptide cleavage studies of PS-TRPGGDA support
4.2.e Kinetic comparison of PS-TRPGGDA supports with Merrifield resin
4.2.f Optimization of the PS-TRPGGDA support
4.3 Experimental
4.3.a Materials
4.3.b Optimization of C-terminal amino acid incorporation studies
1. Time dependent C-terminal Boc-amino acid incorporation
2. Time-dependent C-terminal Fmoc-amino acid incorporation
4.3.c Synthesis of PS-TRPGGDA-Val- (Ala) 4-Val-Boc and PS-DVB-Val (Ala) 4-V aI-Boc
4.3.d Synthesis of PS-TRPGGDA-HMPA-Val- (Ala) 4-Val-Fmoc and PS-DVB-HMPA-Val (Ala) 4-Val-Fmoc
4.3.e Optimization of Na-deprotection studies
1. Time dependent Boc-deprotection
2. Time dependent Fmoc-deprotection
4.3.f Optimization of time and temperature dependent coupling
4.3.g Time and temperature dependent cleavage of the peptide
4.3.h Preparation of N-benzoylglycine 4-nitrophenyl ester
4.3. i Aminolysis of N-benzoylglycine-4-nitrophenyl ester by C-terminal amino acid attached polymeric supports
References
5. Comparative Study of PS-TRPGGDA Supports with Merrifield. Pam and Sheppard Resins
5.1 Introduction
5.2. Results and Discussion
5.2.a. Synthesis of peptides using Boc-amino acids
1. Comparative synthesis of retro acyl carrier (74-65) protein fragment
5.2.b. Synthesis of peptides using Fmoc-chemistry
1. Comparative synthesis of Leu-Ala-Gly-Val
2. Comparative synthesis of acyl carrier protein (65-74) fragment
3. Comparative synthesis of Ala-Arg- (Ala) 6-Lys peptide
4. Comparative synthesis of 15 residue Syntide 2 peptide
5. Comparative synthesis of 21 residue peptide amide of dermaseptin
5.3. Experimental
5.3.a. Materials
5.3.b. Preparation of Boc-azide
5.3.c Preparation of Boc-amino acids by Schnabels method
5.3.d. Preparation of 1-hydroxybenzotriazole
5.3.e. Methods for purification and characterisation of peptides
1. Column chromatography
2. Amino acid analysis
3. Matrix assisted laser desorption ionisation mass spectroscopy
5.3.f. Preparation of Boc-Val-PS-TRPGGDA resin
5.3.g Comparative synthesis of retro acyl carrier protein (74-65) fragment
5.3.h. Derivatisation of the resin with HMPA linker
I. Preparation of PS-TRPGGDA-HMPA resin
2. Preparation of PS-DVB-HMPA resin
5.3.i. Anchoring of C-terminal Fmoc-Val
1. Preparation of Fmoc-Val- HMPA- PS-TRPGGDA resin
2. Preparation of Fmoc-VaI-HMPA-PS-DVB resin
5.3.j Comparative synthesis of Leu-Ala-Gly-Val
5.3.k. Anchoring or C-terminal Fmoc-Gly
1. Preparation of Fmoc-Gly-HMPA- PS-TRPGGDA resin
2. Preparation of Fmoc-Gly- HMPA-PS-DVB resin
5.3.l. Comparative synthesis of acyl carrier protein (65-74) fragment
5.3.m. Anchoring of C-terminal Fmoc-Lys
I. Preparation of Fmoc-Lys-HMPA-PS-TRPGGDA resin
2. Preparation of Fmoc-Lys-HMPA-PS-DVB resin
5.3.n. Comparative synthesis of Ala-Arg- (Ala) 6-Lys peptide
5.3.o Comparative synthesis of Syntide 2 Peptide
5.3.p. Derivatisation of supports with rink amide linker
1. Preparation of PS-TRPGGDA-Rink amide resin
2. Preparation of Merrifield resin-Rink amide resin
5.3.q. Anchoring of C-terminal Fmoc-Ala
1. Preparation of Fmoc-Ala-Rink amide-PS-TRPGGDA resin.
2. Preparation of Fmoc-Ala-Rink amide-Merrifield resin
5.3.r. Comparative synthesis of 21 residue dermaseptin peptide amide
References
6. Solid Phase Synthesis of Biologically Active Peptides Using PS-TRPGGDA Supports
6.1. Introduction
6.2. Results and Discussion
6.2.a. Synthesis of peptides using Boc chemistry
1. Leu-Gly-Ala-Leu-Gly-Ala
2. Ala-Ala-Ala-Ala
3. 17 residue Chicken IL-2 DNA peptide
4. Ala-Cys-Ala-Pro-Pro-Ala-Asp-Arg-Ala-Thr-Arg-Ala
6.2.b. Synthesis of peptides using Fmoc chemistry
6.2.b.1. Synthesis of peptide substrates of Ca 2+/ calmodulin binding peptide
6.2.b.1.a. Synthesis of NR2B peptide substrates of Ca2+/ calmodulin binding peptide
6.2.b.1.b Synthesis of NR2A peptide substrates of Ca2+ / calmodulin binding peptide
6.2.b. 1.c. Synthesis of NR2B mutated peptide substrate of Ca 2+/ calmodulin binding peptide using semiautomatic peptide synthesiser
6.2.b.2. Synthesis of non-structural protein fragments of hepatitis C viral protein
6.2.b.2.a. Synthesis of NS2 peptide fragment of hepatitis C viral protein
6.2.b.2.b. Synthesis of NS3 peptide fragment of hepatitis C viral protein
6.2.b.2.c. Synthesis of NS4 peptide fragment of hepatitis C viral protein
6.2.b.2.d. Synthesis of NSF peptide fragment of hepatitis C viral protein
6.2.b.3 Synthesis of HIV-1 Rev. NES peptide
6.2.b.4. Synthesis of M10 mutant NES peptide
6.2. b. 5. Synthesis of Tyr-Ser-Arg-Arg-Lys-Tyr-Ser-Ser-Trp-Tyr.
6.2.b.6. Synthesis of Asn-Pro-Val-Tyr
6.3. Experimental
6.3.a Materials
6.3.b. Synthesis of peptides using Boc chemistry
I. Leu-Giy-Ala-Leu-Gly-Ala
2. Ala-Ala-Ala-Ala
3. 17 residue Chicken IL-2 cDNA peptide
4. Ala-Cys-Ata-Pro-Pro-Ala-Asp-Arg-Ala-Thr-Arg-Ala
6.3.c. Synthesis of peptides using Fmoc chemistry
I. Synthesis of NR2B peptide substrates of Ca 2+ / calmodulin binding peptide
2. Synthesis of NR2A peptide substrates of Ca2+ / calmodulin binding peptide
3. Synthesis of NR 2B mutated peptide substrate of Ca2+ / calmodulin binding peptide using semiautomatic peptide synthesiser
4. Synthesis of NS2 peptide fragment of hepatitis C viral protein
5. Synthesis of NS3 peptide fragment of hepatitis C viral protein
6. Synthesis of NS4 peptide fragment of hepatitis C viral protein
7. Synthesis of NS5 peptide fragment of hepatitis C viral protein
8. Synthesis of HIV-1 Rev. NES peptide
9. Synthesis of M10 mutant NES peptide
10. Synthesis of peptide Tyr-Ser-Arg-Arg-Lys-Tyr-Ser-Ser-Trp-Tyr
11. Synthesis of Asn-Pro-Val-Tyr
References
7. Summary