HOME
Search & Results
Full Text
Thesis Details
Page:
223
Full Screen
TITLE
CERTIFICATE
DECLARATION
ACKNOWLEDGEMENT
CONTENTS
LIST OF NOTATIONS AND ABBREVIATIONS
1 INTRODUCTION
1.1 Chemical modification
1.1.1 Attachment of pendant groups
1.1.1a Hydrogenation
1.1.1b Halogenation
1.1.1c Hydrohalogenation
1.1.1d Epoxidation
1.1.1e Carbenr addition
1.1.1f Iiydrosilylation
1.1.1g Sulphonation, carboxylation and phosphonylation
1.1.1h ENPCAF modification
1.1.1i Maleic derivatives
1.1.1j Ene reaction
1.1.2 Grafting
1.1.2a Grafting a polymer on the rubber molecule
1.1.3 Bond rearrangement reactions
1.1.3.a Cyclisation
1.1.3.b Isomerisation
1.1.4 Other Modifications
1.1.4.a Depolynierisation
1.2 Blending of elastomers
1.2.1 Reasons for blending
1.2.2 Factors affecting properties of blend
1.2.2.a Distribution offiller between elastomers
1.2.2.b Distribution of plasticiser between elastomers
1.2.2.c Distribution ofsoluble contpourtdirtg ingredients
1.2.3 Thermodynamic criteria for miscibility
1.2.4 Compatibilisation
1.2.4.a Techniques of compatibilisation
1.2.4.b Use of block or graft copolymer
1.2.4.c Compatibilisation by in-situ reaction
1.2.4.d Compatibilisation by block and graft copolymers- basic features
1.2.4.e Theories of compatibilisation
1.2.5 Characterisation of the compatibilised blends
1.2.6 Compatibilisation studies on rubber-rubber blends
1.3 Scope of the present work
References
2 MATERIALS AND EXPERIMENTAL TECHNIQUES
2.1 Materials
2.1.1 Styrene butadiene rubber (SBR)
2.1.2 Polychloroprene rubber (CR)
2.1.3 Nitrile rubber (NBR)
2.1.4 Natural rubber (NR)
2.1.5 Solvents
2.1.6 Chemicals and fillers
2.2 Preparation of dichlorocarbene modified styrene butadiene rubber (DCSBR)
2.3 Estimation of chlorine content of the polymer
2.4 Preparation of elastomers and elastomer blends
2.4.a NR/DCSBR blends
2.4.b SBR/NBR blends
2.4.c SBR/CR blends
2.5 Processing characteristics
2.5.1 Monsando rheomester
2.6 Preparation of vulcanised samples
2.7 Characterisation studies
2.7.1 H FTNMR studies
2.7.2 FTIR
2.7.3 Gel permeation chromatography
2.8 Thermal analysis
2.8.1 Differential scanning calorimeter
2.8.2 Thermogravimetry
2.8.3 Dynamic mechanical thermal analysis
2.9 Flammability behaviour
2.9.1 Limiting oxygen index
2.10 Scanning electron microscopy studies
2.11 Cross link density determination
2.11.a From mechanical measurements
2.11.b From solvent swelling
2.12 Physical test methods
2.12.1 Modulus, tensiles trength arid elorigation at break
2.12.2 Tear resistance
2.12.3 Hardness
2.12.4 Abrasiorr resislarrce
2.12.5 Compression sel
2.12.6 Rebound resiliertce
2.13 Degradation studies
2.13.1 Ozone cracking
2.13.2 Thermal ageing
2.13.3 Oil ageing
References
3 PREPARATION AND CHARACTERISATION OF DICHLOROCARBENE MODIFIED STYRENE BUTADIENE RUBBER
3.1 Introduction
3.2 Effect of time and temperature on dichlorocarbene addition to SBR
3.3 Characterisation of modified SBR
3.3.1 FT H-NMR characterization
3 3.2 FTIR characterization
3.3.3 Gel permeation chromatography
3.3.4 Differential scanning calorimetry
3.3.5 Thermogravimetric analysis
3.3.6 Flammability behavior
References
4 VULCANISATION BEHAVIOUR, TECHNOLOGICAL PROPERTIES AND EFFECT OF DIFFERENT FILLERS ON DICHLOROCARBENE MODIFIED SBR.
4.1 Introduction
4.2 Vulcanisation behaviour of dichlorocarbene modified SBR
(a) Sulphur vulcanisation
(b) Metal oxide vulcanisation
(c) Thermovulcanisation
(d) Dicumyl peroxide vulcanisation
4.3 Physical properties
4.3.1 Stress-strain behaviour
4.3.2 Air and oil ageing
4.3.3 Ozone resistance
Fig. 4.7. Optical photographs of 10 b of ozone exposed (a) SBR, (b) modified SBR with 15%, (c) 20% and (d) 25% chlorinecontent.
4.4 Effect of different fillers on sulphur cured 15% chlorine containing DCSBR.
4.4.a Processing characteteristics
4.4.b Effect of fillers on technological properties
References
5 BLENDS OF NATURAL RUBBER AND DICHLOROCARBENE MODIFIED STYRENE BUTADIENE RUBBER
5.1 Introduction
5.2 Cure characteristics of NR / DCSBR blends
5.3 Characterisation of blends
5.3.1 DSC thermograms
5.3.2 Scanning electron microscopy
Fig. 5.6. Scanning electron micrographs of 50150 NR/DCSBR blends: (a) 0, (b) 5, (c) 10 and (d) 15 phr SBR as compatibiliser.
5.4 Effect of concentration of compatibilisers on technological properties of NR / DCSBR blends
5.4.a Mechanical properties
5.4.b Ageing resistance
5.4.c Oil ageing
5.5 Cross link density from swelling and stress-strain behaviour
References
6 COMPATIBILISATION OF SBR / NBR BLENDS WITH DICHLOROCARBENE MODIFIED STYRENE BUTADIENE RUBBER
6.1 Introduction
6.2 Effect of chlorine content of dichlorocarbene modified styrene butadiene rubber on the miscibility and mechanical properties of SBR / NBR blends.
6.2.1 Processing characteristics from rheometric data
6.2.2 Characterisation of blend
6.2.2.a Thermal analysis
6.2.2.b Dynamic mechanical analysis
6.2.3 Effect of compatibiliser on technological properties
Oil resistance
Ageing resistance
6.2.4 Effect of chlorine content of compatibiliser on swelling behavior
(a) Swelling parameters
6.2.5 Calculation of cross link density
(a) From swelling studies
(b) From stress-strain data
6.3 Effect of concentration of DCSBR on the miscibility and mechanical properties of SBR / NBR blends
6.3.1 Effect of concentration o f DCSBR on processing characteristics
6.3.2 Characterisation of blends
6.3.2.a Differential scanning calorimetry
6.3.2.b FTIR analysis
6.3.2.c Morphological studies
Fig. 6.17. SEM micrographs of 50150 SBFUNBR blend (a) withoutcompatibiliser (b) with 5 phr DCSBR (c) with 10 phr DCSBR
6.3.3 Effect of concentration of compatibiliser on the swelling behavior
6.3.4 Calculation of cross link density from stress-strain data
6.3.5 Effect of concentration of compatibiliser on technological properties
6.3.6 Different mechanical modeling for tensile strength variation of compatibilised blends
(a) Einstein Equation
(b) Mooney Equation
(c) Brodnyan Equation
(d) Guth Equation
(e) Kerner Equation
(f) Sato-Furukawa model
References
7 EFFECT OF DIFFERENT FILLERS ON COMPATIBILISED AND UNCOMPATIBILISED SBR / NBR BLENDS
7.1 Introduction
7.2 Effect of different fillers on the processing characteristics
7.2.1 (a) Effect of blend composition
(b) Effect of compatibiliser
7.2.2 Effect of loading of fillers on technological properties
Fig. 7.5. Optical photographs of 10 h of ozone exposed (a) 10, (b) 20, (c) 30, (d) 40 phr carbon bIack filled 50150 compatibilised blend
7.3 Effect of loading of carbon black and silica on swelling behaviour
7.3.1 Swelling parameters
7.3.2 Calculation of cross link density from swelling and stress-strain data
7.3.3 Stress-strain data
References
8 EFFECT OF DICHLOROCARBENEMODIFIED STYRENEBUTADlENE RUBBER INCOMPATIBILISATION OFSBWCR BLENDS
8.1 Introduction
8.2 Processing characteristics from rheometric data
8.3 Characterisation of blends
8.3.1 Thermal analysis
8.3.2 FTIR analysis
8.4 Effect of compatibiliser on technological properties
8.5 Calculation of cross link density
(a) Stress-strain isotherms
(b) Swelling studies
8.6 Effect of different fillers on compatibilised SBR / CR (50/50) blends
References
9 SUMMARY AND CONCLUSION
APPENDIX
List of Publications
Dichlorocarbene Modification of Styrene-Butadiene Rubber.
Dichlorocarbene Modified SBR - Vulcanization Behaviour and Physical Properties