• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 190
 
Full Screen

  • TITLE
  • CERTIFICATE
  • DECLARATION
  • PREFACE
  • ACKNOWLEDGEMENT
  • CONTENTS
  • 1. BASIC THEORY
  • 1.1 INTRODUCTION
  • 1.2 NORMAL CO-ORDINATE. ANALYSIS
  • 1.3 MATHEMATICAL FORMALISM
  • 1.4 THE UNDER-DETERMINED NATURE OFTHE PROBLEM
  • 1.5 NEW APPROACH
  • 1.6 THE MEAN AMPLITUDES OF VIBRATION
  • 1.7 POTENTIAL ENERGY OF A MOLECULE
  • 2. A NEW CRITERION FOR MOLECULAR GEOMETRY
  • 2.3 MATHEMATICAL FORMALISM
  • 2.4 THE PARAMETRIC APPROACH
  • 2.5 RESULTS AND DISCUSSIONS
  • 2.6 BENDING ENERGY MINIMISATION
  • 2.7 AN APPROXIMATION CRITERION
  • Table II.1 data on vibrational frequencies of xy2 bent symmetric type molecules
  • Table II.2 Inter bond angle determined from Bending Energy considerations
  • Table II.3 Interbond angle from interaction energy consideration
  • Fig.2 a. shows the variation of the Bending energy with lnter bond angle for Cl02
  • Fig.2 b shows the variation of interaction energy with inter bond angle for ClO2
  • Fig.2 c shows the variation of stretch and stretch-stretch interaction energy with inter bond angle for CI02
  • Fig.2 d shows the variation of the Bending energy with lnter bond angle for NO2
  • Fig.2 e shows the variation of interaction energy with inter bond angle for NO2
  • Fig.2 f shows thc variation of stretch and stretch-stretch interaction energy for NO2
  • Fig.2 g. shows the variation of the Bending energy with lnter bond angle for SO2
  • Fig.2 h shows the variation of the Interaction energy with Inter bond angle for SO2
  • Fig.2 i shows the vanation of the Bending energy with Inter bond angle for Cl2S
  • Fig.2 j shows the variation of interaction energy with inter bond angle for Cl2s2
  • Fig.2 k shows the variation of the Bending energy with lnter bond angle for Cl2O
  • Fig.2 l shows the vanation of interaction energy with inter bond angle for Cl2O
  • Fig.2 m shows the ariation of the Bending energy with Inter bond angle for H2O
  • Fig.2 n shows the variation of the Interaction energy with Inter bond angle for H20
  • Fig.2 o shows the variation of the stretch -energy and stretch-stretch interaction energy with Inter bond angle for H20
  • Fig.2 p shows the variation of the Bending energy with Inter bond angle for HJ
  • Fig.2 q shows the variation of the Interaction energy with Inter bond angle for H2S
  • Fig.2 r shows the variation of the stretch energy and stretch-stretch interaction energy with Inter bond angle for H2S
  • Fig.2 s shows the variation of the Bending energy with Inter bond angle for H2Se
  • Fig.2 t shohs the variation of interaction energy with inter bond angle for H2Se
  • Fig.2 u shows the variation of the stretch -energy and stretch-stretch interaction energy with Inter bond angle for H2Se
  • 3. BENDING ENERGY MINIMIZATION CRITERION APPLIED TO XY3 PYRAMIDAL SYSTEMS FOR PREDICTING THEIR GEOMETRY
  • 3.1 INTRODUCTION
  • 3.2 SYMMETRY CONSIDERATION
  • 3.3 MATHEMATICAL FORMALISM
  • 3.4 RESULTS AND DISCUSSIONS
  • Table III.1Data table for XY3 Pyramidal type molecules
  • Table III.2 Inter bond angle determined from Energy considertations
  • Table 3 Inter bond angle determinwd from energy considertations
  • Fig. 3.a Shows the variation of Bending energy with lnter bond angle for SbH3
  • Fig.3.b shows the variation of Stretch energy with Inter bond angle for SbH3
  • Fig.3 c shows the variation of interaction energy with Inter bond angle for SbH3
  • Fig.3 d shows the variation of Bending energy with Inter bond angle for NH3
  • Fig.3 e shows the variation of Stretch energy with Inter bond angle for NH3
  • Fig.3 f shows the variation of Interaction energy with lnter bond angle for NH3
  • Fig.3.g shows the variation of Bending energy with Inter bond angle for AsH3
  • Fig.3 h shows the variation of Stretch energy with lnter bond angle for AsH3
  • Fig.3.i shows the variation of Interaction enera with lnter bond angle for AsH3
  • Fig.3.J shows the variation Bending energy with Inter bond angle for PH3
  • Fig.3 k shows the vanation of stretch energy with Inter bond angle for PH3
  • Fig.3. l shows the variation of Interaction energy with lnter bond angle for PH3
  • 4. STRUCTURAL ANALYSIS OF X Y2 TYPE MOLECULES [LINEAR VERSUS BENT SYMMETRIC) BASED ON BENDING ENERGY MINIMIZATION CRITERION
  • 4.1 INTRODUCTION
  • 4.2 MATHEMATICAL FORMALISM
  • 4.3 RESULTS AND DISCUSSIONS
  • Table IV.1 Data Table for CO2 and S2 molecules
  • Table IV.2 Inter bond angle determined from Bending Energy considertations
  • Fig 4 Shows the variation of bending energy with inter bond angle for CO2 CS2 and SO2
  • 5. AN APPROXIMATION METHODFOR FORCE FIELD CALCULATION
  • 5.1 INTRODUCTION
  • 5.2 AN INTERESTING OBSERVATION VRX
  • 5.3 MATHEMATICAL FORMULATION
  • 5.4 RESULTS AND DISCUSSION
  • Table V.1 F matrix elements for some XY2 Bent symmetric molecules based on interaction energy minimum extremum criterion
  • Table V I Comparison of the valence force constants obtained by the present method and Redington - Aljibury approximation (in 10-2 N/m)
  • 6. MEAN AMPLITUDES OF VIBRATION AS A TOOL FOR STRUCTURAL ANALYSIS OF SIMPLE MOLECULES
  • 6.1 INTRODUCTION
  • 6.2 MEAN AMPLITUDES OF VIBRATION
  • 6.3 MATHEMATICAL FORMALISM
  • 6.4 APPLICATION TO BENT SYMMETRIC XY2 SYSTEM.
  • 6.5 APPLICATION TO XY2 LINEAR SYMMETRIC SYSTEM
  • 6.6 APPLICATION TO XY3 PYRAMIDAL SYSTEMS.
  • 6.7 RESULTS AND DISCUSSIONS
  • TABLE V1. I Mean amplitudes for XY2 bent - symmetric molecules
  • TABLE VI.2 Mean amplitudes for XY2 linear - symmetric molecules
  • TABLE VI.3 Mean ampl ix-y (in 10-2 nm) for XY3 pyramidal moleculesitudes
  • TABLE VI.4. Inter bond angle form Ixy minimum XY2 bent symmetric molecules
  • Fig 6 a shows the variation of bonded mean amplitude withinter bond angle for Cl02.
  • Fig 6 b shows the variation of bonded mean amplitude with inter bond angle for NO2.
  • Fig.6c Shows the variation of bonded amplitude with inter bond angle for SO2 and CIO2
  • Fig.6d Shows the variation of bonded mean amplitude with inter bond angle for H2O (---) and Ci2s (-X-X)
  • Ftg 6.e shows the variation of bonded mean amplitude withinter bond angle for Ha.
  • Fig 6 f shows the variation of bonded mean amplitude withinter bond angle for CS2 and C02.
  • Fig 6.g shows the variation of bonded mean amplitude withinter bond an; gle for SbHl (...) ASH, (+ + +)
  • 7. AN INTERESTING CASE STUDY ON THE STRUCTURE OF WATER MOLECULE
  • 7.1 INTRODUCTION
  • 7.2 USE OFBENDING ENERGY MINIMISATION CRITERION
  • 7.3 THE MEAN AMPLITUDES
  • 7.4 SOLUTION TO THE STRUCTURAL AMBIGUITY
  • Table VII.1 DAta vibrational frequencies of H2O (Hamada)
  • Fig.7a, shows thc variation of Bending enerby with inter bond angle all) r /& (I (C, structure)
  • Fig.7b, shows the variation of Bending energy with inter bond angle afor H20 (Dm) s, t ructure)
  • Fig.7c, shows tlic variation ofMean Amplitude with inter bond angle aSor H2 (? C3, (...) & /Id, (- - -)
  • 8. GENERAL CONCLUSIONS
  • APPENDIX - PROGRAMME 1
  • APPENDIX - PROGRAMME 2
  • REFERENCE