• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 287
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • PREFACE
  • ABBREVIATIONS
  • CONTENTS
  • 1. INTRODUCTION
  • 1.1. Synthesis of different types of epoxy resins
  • 1.1.1. Epoxidation using epichlorohydrain
  • 1.1.2. Epoxidation of olefins
  • 1.2. Cure reaction and curatives of epoxy resins
  • 1.3. Modified epoxy resins
  • 1.3.1. Epoxy resins modified with reactive rubbers
  • 1.3.2. Epoxy resins modified with siloxanes
  • 1.3.3. Epoxy resins modified with thermoplastics
  • 1.4. Epoxy-imide resins
  • 1.4.1. Epoxy-imide resins from conventional epoxy resins and imide group containing curatives
  • 1.4.2. Epoxy-imide resins obtained by the modification of backbone epoxy resin with imide groups
  • 1.4.3. Epoxy-imide resins obtained by blendingepoxy resins with polyimides
  • 1.5. End-uses of modified epoxy resins
  • 1.6. Objective and scope of the present investigation
  • 2. EXPERIMENTAL
  • 2.1. Materials
  • 2.1.1. Solvents
  • 2.1.2. Aminoacids / diamines
  • 2.1.3. Other reagents and materials
  • 2.1.4. Anhydrides
  • 2.1.5. Epoxy resins
  • 2.2. Synthesis of imide-diacids
  • 2.3. Synthesis of diimicle-diacids
  • 2.3.1. From aromatic diamines
  • 2.3.2. From aliphatic diamines
  • 2.3.3. From siloxane linkages containing diamine
  • 2.4. Synthesis of monoitaconamic acid
  • 2.5. Synthesis of maleimidobenzoic acids
  • 2.6. Pre-reaction of epoxy resins with CTBN-L or CTBN-S
  • 2.7. Synthesis of siloxane-imide- epoxy resin
  • 2.8. Pre-reaction of siloxane-imide-epoxy resins
  • 2.9. Preparation of epoxy-imide polymers
  • 2.10. Characterization
  • 2.10.1. IR spectral studies
  • 2.10.2. NMR spectral studies
  • 2.10.3. Elemental analysis
  • 2.10.4. Chemical analysis
  • 2.10.4.1 Determination of epoxy value
  • 2.10.4.2 Determination of acid value
  • 2.10.4.3 Determination of hydroxyl value
  • 2.10.5 Determination of molecular weights
  • 2.10.6 Thermal analysis
  • 2.10.6.1 Differential scanning calorimetry
  • 2.10.6.2 Therrnogravimetric analysis
  • 2.10.7 X-ray clifferaction studies
  • 2.10.8 Morphological Studies
  • 2.11. Evaluation of adhesive properties
  • 2.11.1. Surface preparation of stainless steel coupons
  • 2.11.2. Evaluation of lap shear strength (LSS) of bonded coupons
  • 2.12. Evaluation of epoxy-imides as matrix resins for composites. 2.12.1. Preparation of unidirectional composites
  • 2.12.1 Preparation of unidirectional (U.D.) composites
  • 2.12.2. Testing of unidirectional composites
  • 2.13. Evaluation of siloxane containing epoxy-imide polymers as atomic oxygen resistant coatings
  • 2.13.1. Preparation of coatings
  • 2.13.2 Exposure of uncoated and coated samples to atomicoxygen
  • 2.13.3. Surface analysis
  • 3. RESULTS AND DISCUSSION
  • 3.1. Epoxy-imide resins obtained from imide-diacids
  • 3.1.1. Background
  • 3.1.2. Synthesis of epoxidized hydroxyl terminated polybutadiene (EHTPB)
  • 3.1.3. Synthesis and characterization of imide-diacids
  • 3.1.4. Synthesis and characterization of epoxy-imide resins from GY 250 / EPN 1138 / EHTPB and imide-diacids
  • 3.1.5. Thermal properties of epoxy-imide resins
  • 3.1.6. X-ray diffraction studies of epoxy-imide resins
  • 3.1.7. Adhesive strength of epoxy-imide resins
  • 3.1.7.1 Adhesive lap shear strength of GY 250-IDA-[/IDA-11systems
  • 3.1.7.2 Adhesive lap shear strength of EPN 1138-IDA-I/IDA-11systems
  • 3.1.7.3 Adhesive lap shear strength of EHTPB-IDA-YIDA-I1systems
  • 3.1.7.4. Comparative evaluation of adhesive strength of epoxy-irnideresins obtained from GY 250, EPN 1138 and EHTPB
  • 3.1.8. Effect of carboxyl to epoxy equivalent ratio on adhesive lap shear strength and thermal property of epoxy-imide resins
  • 3.1.8.1. Thermal stability of epoxy-imide resins obtained usingdifferent carboxyl eqv to epoxy eqv ratios
  • 3.1.8.2. Adhesive lap shear strength of GY 250-IDA-UIDA-I1systems
  • 3.1.8.3 Adhesive lap shear strength of EPN 1138-IDA-MDA-I1systems
  • 3.1.8.4 Adhesive lap shear strength of EHTPB-IDA-YIDA-I1systems
  • 3.1.8.5 Comparative evaluation of adhesive strength of epoxyimideresins obtained from GY 250-IEPN 1138-IEHTPBIDA-I/IDA-I1 for varying carboxyl eqv to epoxy eqv ratio.
  • 3.1.9. Conclusions
  • 3.2. Epoxy-imide resins obtained from diimide-diacids
  • 3.2.1. Background
  • 3.2.2. Synthesis of 2, 2-bis[4- (4-trimellitimidophenoxy) phenyl] propane (DIDA-V)
  • 3.2.3. Synthesis and characterization of epoxy-imide resins from GY 250 / EPN 1138 and diimide-diacid (DIDA-V)
  • 3.2.4. Thermal properties of epoxy-imide resins (GY 250 / EPN 1138-DIDA-V)
  • 3.2.5. Adhesive lap shear strength of GY 250-DIDA-V and EPN 1138-DIDA-V systems
  • 3.2.6. Epoxy-imides obtained from EHTPB and DIDA-V
  • 3.2.7. Glass fibre reinforced unidirectional composites obtained from GY 250-/ EPN 1138-DIDA-V systems
  • 3.2.8. Comparison of adhesive and thermal properties of DIDA-V based epoxy-imides with that of IDA-based epoxy-imides
  • 3.2.9. Comparison of adhesive and thermal properties of epoxy-imide resins based on DIDA-V with other epoxy-imide resins obtained from different aromatic and aliphatic diamines
  • 3.2.10. Thermal stability of GY 250-/ EPN 1138-DIDA systems
  • 3.2.11. Conclusions
  • 3.3. Epoxy-imide resins modified with reactive liquid rubbers
  • 3.3.1. Background
  • 3.3.2. Epoxy-imide resins modified with EHTPB
  • 3.3.2.1 Effect of addition of EHTPB on the adhesive strength of GY250-IEPN 1138-IDA-UIDA-I1 systems
  • 3.3.2.2 Thermal stability of EHTPB-modified epoxy-imide systems
  • 3.3.2.3 Morphological studies of the EHTPB-modified epoxy-imidesystems
  • Fig. 3.3.9. SEM of GY 250-IDA4 system (unrnod1jie4
  • Fig. 3.3.10 SEM of EPN f 138-IDA4 system (i s d @ e g
  • Fig.3.3.12. SEM of EHTPB (10 wt. %) mod@&EPN 1138-IDA-- I system
  • 3.3.3. Epoxy-imide resins modified with CTBN-L and CTBN-S 3.3.4. Conclusions
  • 3.3.3.1 Effect of addition of CTBN-L on the adhesive strength ofGY 250-/EPN 1138-IDA-[/IDA-I1 systems
  • 3.3.3.2 Thermal stability of epoxy-imide systems modified withCTBN-L
  • 3.3.3.3 Morphological studies of epoxy-imide systems modified withCTBN-L
  • 3.3.3.4 Effect of addition of CTBN-S on the adhesive strength of GY250-/EPN 1138-IDA-IIIDA-I1 systems
  • Fig. 3.3.18. SEM of CTBN-L (10 phr) -modifiedGY 250-IDA-I system
  • Fig. 3.3.1 9. SEM of CTBN-L (I 0 phr) -modgedEPN 1138-IDA-I system
  • 3.3.3.5 Thermal st: thility of CTBN-S-modified epoxy-imide resins
  • 3.3.3.6 Morphology studies of epoxy-imide resins modifiedwith CTBN-S
  • Fig. 3.3.25. SEM of CTBN-S (I0 ph) -mudfiedGY 250-IDA-1 system
  • Fig. 3.3.26. SEM of CTBN-S (I 0 phr) n~oclijriedEPN 1 138-IDA-1 system
  • 3.3.3.7 Comparison of adhesive strength of epoxy-imides modifiedwith EHTPB, CTBN-L and CTBN-S
  • 3.3.4. Conclusions
  • 3.4. Epoxy-imide resins containing siloxane linkages
  • 3.4.1. Background
  • 3.4.2. Synthesis of 1, 3-bis (3-trimellitimidopropyl) 1, 1, 3, 3-tetramethyldisiloxane (DIDA-XII)
  • 3.4.3. Synthesis of epoxy-imide resins containing siloxane linkages
  • 3.4.3.1 Thermal stability of epoxy-imide resins containing siloxanelinkages
  • 3.4.3.2 Adhesive lap shear strength of epoxy-imide resinscontaining siloxane linkages
  • 3.4.4. Synthesis of siloxane-imide-epoxy resin
  • 3.4.5. Siloxane-epoxy-imide resin based atomic oxygen resistant coatings
  • 3.4.5.1 Preparation of siloxane-epoxy-imide coatings
  • 3.4.5.2 Evaluation af A0 resistance of siloxane-imide-epoxy-basedcoating
  • 3.4.5.3 Siloxane-imide-epoxy based A0 resistant coating forpolyimide film
  • Fig. 3.4.1 4. SEM of uncoated aluminized Kapiour$lm {tMcknr!ss: 25 pm) exposed lo AO, flumce of 4.4xldb aomdm2
  • Fig. 3.4.15. SEM of coated aluminized Kupton flm thickness: 6th ickness: 25, ug] exposed to A0 jluence of20xl d atoms/cm2
  • Fig 3.418. SEM of coated aluminized Kapton film (1 25) exposed to A 0 fluence of 20xld0 atoms/cm r
  • 3.4.5.4 Siloxane-imide-epoxy based A0 resistant coating forC-polyimide and glass-polyimide composites
  • Fig. 3.4.20. SEM of urlcoated C-PI composite exposed to A 0fruence of 9.6x1do ~oms/cm2
  • Fig. 3.4.21. SEM of coated C-PI composite exposed AO fluence of 23x10 28 atoms/cm2
  • Fig. 3.4.23. SECi of uwuated glw-potyrmi& compositeexposed to A0 fluence of 9.6r10ae otoms/cd
  • Fig. 3.4.2 4. SEM of coaled glas.v-polyinzid e composireexposed to AO.j[uence of 23x1 0 aloms/cm2
  • 3.4.6 Conclusions
  • 3.5. Addition-type epoxy-imide resins
  • 3.5.1 Background
  • 3.5.2 Synthesis of monoitaconamic acid (MIA)
  • 3.5.3. Background
  • 3.5.4 Synthesis of addition-type epoxy-imide resins
  • 3.5.5. Thermal stability of addition-type epoxy-imides
  • 3.5.6. Adhesive strength of addition-type epoxy-imide resins
  • 3.5.7. Conclusions
  • 4. SUMMARY AND CONCLUSIONS
  • Scope for further work
  • REFERENCES
  • Research Publications & Patents
  • Epoxy-lmide Resins from N- (4- and 3-carboxyphenyl) trimellitimides. I. Adhesiveand Thermal Properties