• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 272
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFlCATE-1
  • CERTIFICATE-2
  • DECLARATION
  • ACKNOWLEDGEMENT
  • SYMBOLS AND ABBREVIATIONS
  • CONTENTS
  • 1. Introduction
  • 1.1 Introduction
  • 1.2 Incompatibility: problems and solutions
  • Fig.1.1. (a) Interface between immiscible polymers and (b) Interfacial density profile between immiscible polymers.
  • 1.3 Compatibilisation techniques
  • Table 1.1. Compatibility through non-readve copolymers.
  • Table 1.2. Compatibility through reactive copolymers.
  • Table 1.3. Compatibility through low molecular weight reactive compounds.
  • 1.4 Compatibilisation by block and graft copolymers-basic features
  • Fig.1.2. Conformation of the copolymer at the blend interface: (a) graft, (b) diblock and (c) triblock copolymers extending into the homopolymers.
  • 1.5 Theories of compatibilisation
  • 1.6 Thermoplastic elastomers (TPEs)
  • 1.7 Compatibilisation studies on thermoplastic elastomer blends
  • 1.8 Scope of the work
  • 1.8.1 Effect of processing conditions on morphology and mechanical properties
  • 1.8.2 Compatibilising action of NR-graft-PS on morphology and mechanical properties
  • 1.8.3 Melt rheological properties
  • 1.8.4 Stress relaxation measurements
  • 1.8.5 Dynamic mechanical thermal analysis
  • 1.8.6 Thermal properties
  • 1.8.7 Swelling studies
  • 1.9 References
  • 2. Experimental Techniques
  • 2.1 Materials
  • 2.1.1 Natural rubber (NR)
  • Table 2.1. Specifications for ISNR-5 grade NR
  • 2.1.2 Polystyrene (PS)
  • 2.1.3 Graft copolymer (NR-g-PS)
  • 2.1.4 Solvents
  • Table 2.3. Characteristics of the solvents
  • 2.1.5 Other chemicals
  • 2.2 Preparation of the blends
  • 2.2.1 Melt mixed NR / PS blends
  • 2.2.2 Solution casted NR / PS blends
  • 2.3 Characterisation of blend properties Mechanical properties
  • 2.3.1 Mechanical properties
  • a) Tensile strength, modulus and elongation at break
  • b) Tear strength
  • c) Izod impact strength
  • 2.3.2 Morphology of the blends
  • 2.3.3 Melt flow studies
  • (a) Rheological measurements
  • b) Die swell measurements
  • (c) Extrudate morphologv analysis
  • d) Melt flow index (MFI)
  • 2.3.4 Stress relaxation studies
  • 2.3.5 Dynamic mechanical thermal analysis
  • 2.3.6 Thermal studies
  • a) Thermogravimetric analysis (TGA)
  • (b) Differential scanning calorimetry (DSC)
  • 2.3.7 Swelling studies
  • 2.4 References
  • 3. Effect of Processing Conditions on Morphology and Mechanical Properties
  • 3.1 Results and discussion
  • 3. 1.1 Processing characteristics
  • 3.1.2 Morphology of the blends
  • Fig. 3.4. Optical micrographs of solution casted 30/70 NR/PS blends. (a) CHCl3, (b) CCl4 and (c) C6H6
  • Fig. 3.5. Optical micrographs of solution casted 50/50 NR/PS blends (a) CHCl3, (b) CCl4 and (c) C6H6
  • Fig.3.6. Optical micrographs of solution casted 70/30 NR/PS blends (a) CHCl3, (b) CCl4 and (c) C6H6
  • Fig.3.10. Scanning electron micrographs of melt mixed NR/PS blends: (a) 30/70, (b) 40/60, (c) 50/50, (d) 60/40 and (e) 70/30 NR/PS blends.
  • 3.1.3 Mechanical properties
  • 3.1.4 Dynamic vulcanisation
  • Fig.3.19. Schematic representation of blend morphology showing the uniformdistribution of particles upon dynamic crosslinking.
  • Fig.3.20. Schematic representation of dynamically vulcanised NRIPS blendmorphology (a) 70/30, (b) 30/70 NR/PS blend.
  • Fig.3.21. Scanning electron micrographs of dynamically cured 30/70 NR/PS blends: (a) sulphur, (b) mixed and (c) peroxide.
  • 3.2 References
  • 4. Compatibilising Effect of Graft Copolymers on Morphology and Mechanical Properties
  • 4.1 Results
  • 4.1.1 Graft copolymer characterisation
  • 4.1.2 Morphological studies
  • a) Effect of graft copolymer concentration
  • Fig. 4.3. Optical microphotographs of 50/50 NR/PS blend with (a) 0% (b) 1.5% (c) 3% (d) 4.5% graft copolymer.
  • (b) Effect of molecular weights of homo and graft copolymers
  • (c) Effect of mode of addition of graft copolymer
  • Fig.4.9. speculative model illustrating the compatibilisation efficiency under different mode of addition of copolymer.
  • d) Effect of casting solvents
  • Fig.4.10. Optical microphotographs of CCl4 and CHC13 casted films (60/40 NR/PS blend) containing (a) 0% graft, CCl4 (b) 1.2% graft, CC14 (c) 0% graft, CHCI3 (d) 1.2% graft, CHCl3
  • 4.1.3 Mechanical properties
  • 4.2 Discussion
  • 4.3 References
  • 5. Melt Rheological Properties
  • 5.1 Results and discussion
  • 5.1.1 Effect of shear stress and blend ratio on viscosity
  • Fig. 5.2. SEM photographs of extrudate of 50/50 NR/PS blends (solution casted) at differentshear rates: (a) non-compatibilised at 57.6 sec-I, (b) non-compatibilised at 115.2 set., (c) cornpatibi!ised at 57.6 sec-, and (d) compatibilised at 115.2 sec-l)
  • Fig.5.5. Speculative model illustrating the structural build up and breakdowr! at low andhigh shear rate region.
  • Fig.5.6. Schematic representation of the morphology in the absence and presence of acompatibiliser (copolymer)
  • 5.1.2 Effect of processing techniques and blend ratio on viscosity
  • 5.1.3 Effect of compatibiliser loading on viscosity and extrudate morphology
  • Fig. 5.13. SEM photographs of extrudate of solution casted 50/50 NR/PS blends: (a) 0%, (b) 1.5% and (c) 3% graft copolymer.
  • 5.1.4 Effect of temperature and shear stress on viscosity
  • 5.1.5 Flow behaviour index (n)
  • 5.1.6 Extrudate deformation studies
  • Fig.5.18. Extrudate deformation at different shear rates as a function of compatibiliser loading (50/50 NR/PS solution casted blends)
  • Fig.5.19. Extrudate deformation at different shear rates as a function of blend composition (50/50 NR/PS melt mixed and solution casted blends)
  • 5.1.7 Melt elasticity
  • (a) Die swell
  • (b) Principal normal stress difference
  • (c) Recoverable shear strain (SR)
  • 5.1.8 Melt flow index (MFI)
  • 5.2 References
  • 6. Stress Relaxation Studies
  • 6.1 Results and discussion
  • 6.1.1 Effect of strain level
  • 6.1.2 Effect of composition
  • Fig.6.3. Optical microphotographs of (a) 40/60, (b) 50/50 and (c) 60/40 NR/PS blends.
  • 6.1.3 Effect of compatibiliser loading
  • 6.1.4 Effect of ageing
  • 6.2 References
  • 7. Dynamic Mechanical Properties
  • 7.1 Results and discussion
  • 7.1.1 Effect of frequency
  • 7.1.2 Effect of blend composition
  • 7.1.3 Effect of compatibilisation
  • 7.1.4 Modelling of viscoelastic properties
  • 7.1.5 Cole-cole analysis
  • 7.1.6 Time-temperature superposition
  • 7.2 References
  • 8. Thermal Characteristics
  • 8.1 Results and discussion
  • 8.1.1 Thermogravimetry (TG)
  • 8.1.2 Differential scanning calorimetry studies (DSC)
  • 8.2 References
  • 9. Transport of Aliphatic Hydrocarbon Liquids Through Dynamically Crosslinked NR / PS Blends
  • 9.1 Results and discussion
  • 9.1.1 Effect of vulcanising system
  • 9.1. 2 Effect of penetrant size
  • 9.1.3 Mechanism of sorption
  • 9.1.4 Effect of blend composition
  • 9.1.5 Effect of temperature
  • 9.1.6 Thermodynamic parameters
  • 9.1.7 Comparison with theory
  • 9.2 References
  • 10. Conclusion and Future Outlook
  • 10.1 Conclusion
  • 10.2 Future outlook
  • 10.2.1 Influence of block copolymer on compatibilisation
  • 10.2.2 Interfacial tension measurement
  • 10.2.3 Interfacial thickness measurements
  • 10.2.4 Location of the copolymer
  • 10.2.5 Fabrication of useful products
  • APPENDIX
  • List of Publications
  • I. Papers published in International Journals
  • II. Other publications (Chapter for a Book)
  • Ill. Papers presented in lnternational and National Conferences
  • THE TECHNOLOGICAL COMPATIBILIZATION OF NATURAL RUBBER/POLYSTYRENE BLENDS BY THE ADDITION OF NATURAL RUBBER- graft-POLYSTYRENE
  • EFFECT OF CASTING SOLVENTS AND COMPATlBlLlZER LOADING ON THE MORPHOLOGY AND PROPERTIES OF NATURAL RUBBER/POLYSTYRENE BLENDS
  • Curriculum Vitae