HOME
Search & Results
Full Text
Thesis Details
Page:
247
Full Screen
TITLE
CERTIFICATE
DECLARATION
DEDICATION
ACKNOWLEDGEMENT
CONTENTS
PREFACE
LIST OF PUBLICATIONS
I INTRODUCTION
1.1. Atmosphere and its Dynamics
1.2. Composition of the Atmosphere
1.3. Vertical Structure of the Atmosphere
1.4. Radiative Processes
1.5. Thermal Equilibrium in the Atmosphere and Atmospheric Motions
1.6. Atmospheric Waves
1.7. Equatorial Waves
1.7.1. Theoretical Understanding of the Equatorial Wave Characteristics
1.7.1.1. Atmospheric Kelvin Waves
1.7.1.2. Rossby Gravity Waves
1.7.2. Generation Mechanisms of Equatorial Waves
1.7.3. Interaction of Equatorial Waves with the Mean Flow to Generate QBO
1.7.4. Role of Kelvin Wave in the Generation of SAO
1.7.5. Observational Evidence of Equatorial Waves
1.8. Atmospheric Tides
1.8.1. Classical Tidal Theory
1.8.2. Development of More Realistic Models of Tides
1.8.3. Tidal Interactions
1.8.4. Norunigrating Tides
1.8.5. Dynamic Coupling between the Lower and Upper Atmosphere by Tides
1.9. Scope of the Present Study
II MST RADAR WIND MEASUREMENTS
2.1. Introduction
2.2. MST Radars
2.3. Radio Refractive Index and Radar Equation
2.4. Scattering and Reflection Mechanisms
2.4.1. Turbulent Scatter
2.4.2. Fresnel (Partial) Reflection and Scattering
2.4.3. Thomson (Incoherent) Scatter
2.5. Configuration of Indian MST Radar
2.5.1. Antenna Array Configuration
Fig. 2.3. Block diagrarn of Indian MST radar at Gadanki (13.5N. 79.2E)
Table 2.1 Indian MST Radar System Specifications
2.5.2. T/R Switches
2.5.3. Transmitter System
2.5.3.1. Waveform Selection
2.5.3.2. Pulse Compression Techniques
2.5.4. Receiver System
Fig. 2.5. Block Diagram of MST Radar receiver
2.6. Signal Processing
2.6.1. Ranging
2.6.2. Coherent integration
2.6.3. Fourier Analysis
III ESTIMATION OF EQUATORIAL WAVE MOMENTUM FLUXESUSING MST RADAR MEASURED WINDS
3.1. Introduction
3.2. Estimation of Equatorial Wave Momentum Fluxes Using Radiosonde Data
3.3. Momentum Flux Calculations Using Radar Measured Winds
3.4. Estimation of Ve1ocit: y Components
3.4.1. Incoherent Integration (Spectral Averaging)
3.4.2. Power Spectrum Cleaning
3.4.3. Noise Level Estimation
3.4.4. Moments Estimation
3.4.5. Doppler Effect - Line of Sight Velocities
3.4.6. 3 - Dimensional Winds
3.5. Present Method to Estimate the Equatorial Wave Momentum Fluxes
3.6. Accuracy of Momentum Flux Estimates
3.7. Comparison with Other Methods
3.8. Summary
IV SEASONAL VARIATION OF EQUATORIAL WAVEMOMENTUM FLUXES
4.1. Introduction
4.2. Data and Method of Analysis
4.3. Estimation of Equatorial Wave Momentum Fluxes
Fig. 4.1. Time-Height structure of mean zonal wind (u) Continuous curves represent westerlies and dashed curvesrepresent easterlies. Contour intervals are at 5 ms-.
4.3.1. Autumnal Equinox
Fig. 4.2. Time-height structure of zonal wind (11) fluctuations during autumnal equinox season. Easterlies are shaded. Contour intervals areat 2 ms-.
4.3.2. Winter
4.3.3. Vernal Equinox
4.3.4. Summer
4.4. Seasonal Variation of Nlomentum Flux Values
4.5. Simulation of mean flow Acceleration Induced by the Equatorial Waves
4.6. Conclusion
V SEASONAL VARIATION OF DIURNAL TIDES IN THETROPICAL LOWER ATMOSPHERE
5.1. Introduction
5.2. Data and Method of Analysis
5.3. Vertical Structure of.4tmospheric Tides
5.3.1. Autumnal Equinox
5.3.2. Winter
5.3.3. Vernal Equinox
5.3.4. Summer
5.4. Seasonal Variation of Vertical Structure of Diurnal Tides
5.5. Discussion
5.6. Conclusion
VI SIMULATION OF DIURNAL TIDES IN THE LOWERATMOSPHERE OVER GADANKI
6.1. Introduction
6.2. The Classical Tidal Theory
6.2.1. Structure of Tidal Perturbation Fields
6.3. Nomenclature of Tides
6.4. Simulation of Tidal Fields over Gadanki and Comparison withObservations
6.5. Conclusion
VII SUMMARY AND CONCLUSIONS
Scope for Future Study
References