• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 208
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • GLOSSARY OF TERMS
  • CONTENTS
  • Preface
  • 1 Introduction
  • 1.1 Types of polymer blends
  • 1.1.1 Plastics- plastics blends
  • 1.1.2 Plastics-rubber blends
  • 1.1.3 Rubber-rubber blends
  • 1.2 Modification of PVC
  • 1.2.1 General charactteristics of PVC
  • 1.2.2 Compounding of PVC
  • 1.2.2.1 Thermal stabilisers
  • 1.2.2.2 Plasticisers
  • 1.2.3 PVC modification by blending
  • 1.2.3.1 Blends of PVC with homochain homopolymers
  • 1.2.3.2 Blends of PVC with homochain copolymers
  • 1.2.3.3 Blends of PVC with terpolymers
  • 1.2.3.4 Blends of PVC with heterochain polymers
  • 1.3 Polymer-polymer miscibility
  • 1.3.1 Definition
  • 1.3.2 Thermodynamics of polymer miscibility
  • 1.3.3 Characterisation of polymer miscibility
  • 1.3.3.1 Glass transition temperature (Tg)
  • 1.3.3.2 Scattering methods
  • 1.3.3.3 Specific volume
  • 1.3.3.4 Melting point depression
  • 1.3.3.5 Microscopy
  • 1.3.3.6 Rheologcal studies
  • 1.4 Property analysis of blend systems
  • 1.4.1 Mechanical behaviour
  • 1.4.2 Pracessability and rheolog
  • 1.4.3 Degradation
  • 1.5 Blending methods
  • 1.6 Polymerit plasticisers
  • 1.6.1 Butadiene-acrylonitrile copolymers (NBR)
  • 1.6.2 Ethylene- vinylacetate copolymers (EVA)
  • 1.6.3 Polyesters
  • 1.6.4 Epoxidised polydienes
  • 1.6.5 Miscellaneous
  • 1.7 Scope and objectives of the present work
  • 1.7.1 Objectives
  • 1.8 References
  • 2 Experimental
  • 2.1 Materials
  • 2.2 Experimental
  • 2.2.1 Preparation of low molecular weight liquid natural rubber (L-LNR)
  • 2.2.2 Preparation of high molecular weight liquid natural rubber (H-LNR)
  • 2.2.3 Preparation of low molecular weight epoxidised liquid natural rubber with 50 mol % epoxidation (L-ELNR-50)
  • 2.2.4 Preparation of low molecular weight epoxidised liquid natural rubber with 20 mol % epoxidation (L-ELNR- 20)
  • 2.2.5 Preparation of high molecular weight epoxidised liquid natural rubber with 50 mol % epoxidation (H-ELNR-50)
  • 2.2.6 Preparation of high molecular weight epoxidised liquid natural rubber with 20 mol % epoxidation (H-ELNR-20)
  • 2.2.7 kinetics of epoxidation
  • 2.3 Preparation of blends
  • 2.3.1 Designation of blends
  • 2.4 Analysis and measurements
  • 2.4.1 Analysis of epoxidised rubber and the blends
  • 2.4.1.1 HBr titration
  • 2.4.1.2 H-NMR analysis
  • 2.4.1.3 DSC analysis
  • 2.4.1.4 IR analysis
  • 2.4.1.5 Viscosity measurements
  • 2.4.1.6 Ultrasonic measurements
  • 2.4.1.7 Tensile measurements
  • 2.4.1.8 SEM analysis
  • 2.4.1.9 Tensile impact measurement
  • 2.4.1.10 Study of thermal behaviour
  • 2.5 Reference:
  • 3 Results and Discussion
  • 3.1 Epoxidation of liquid natural rubber
  • 3.1.1 Spectroscopic method for estimation of epoxy group in ELNR
  • 3.1.1.1 lR method for the estimation of epoxy group
  • 3.1.1.2 NMR method for the estimation of epoxy group
  • 3.1.2 DSC method for the estimation of epoxy group
  • 3.1.3 Kinetics of epoxidation
  • 3.1.3.1 Effect of temperature on the extent of epoxidation
  • 3.1.3.2 Effect of reaction time
  • 3.1.3.3 Effect of reagent concentration
  • 3.2 Compatibility studies of ELNR and PVC in solution
  • 3.2.1 Viscosity measurement
  • 3.2.1.1 Theoretical consideration
  • 3.2.1.2 PVC / L-LNR blends
  • 3.2.1.3 PVC / ELNR- 20 blends
  • 3.2.1.4 PVC / L-ELNR-50 blends
  • 3.2.2 UItrasonic measurement
  • 3.2.2.1 PVC / L-LNR blends
  • 3.2.2.2 PVC / L-ELNR-20 blends
  • 3.2.2.3 PVC / L-ELNR-50 blends
  • 3.3 Preparation and characterisation of PVC / ELNR blends
  • 3.3.1 IR studies
  • 3.3.2 Thermal analysis
  • 3.3.2.1 Blends of PVC with ELNR-20
  • 3.3.2.2 Blends of PVC with ELNR 50
  • 3.3.4. Thermogravimetric studies of the blends of PVC with ELNR
  • 3.3.4.1 Thermal degradation of PVC
  • 3.3.4.2 Thermal degradation of liquid rubbers
  • 3.3.4.3 Thermal degradation of PVC / L-LNR blends
  • 3.3.4.4 Thermal degradation of PVC / L-ELNR 20 blends
  • 3.3.4.5 Thermal degradation of PVC / L-ELNR 50 blends
  • 3.1.4.6 Effect of epoxy content of liquid rubber on the degradation of PVC
  • 3.3.5 Tensile
  • 3.3.5.1 Deformation behaviour of PVC / L-ELNR-50 blends
  • 3.3.5.2 Deformation behaviour of PVC / H-ELNR 50 blends
  • 3.3.5 3 Deformation behaviour of PVC / L-ELNR 20 blends
  • 3.3.5.4 Deformation behaviour of PVC / H-ELNR 20 blends
  • 3.3.5.5 Effect of molecular weight of the epoxidised liquid natural rubber on tensile properties
  • 3.3.5.6 Effect of epoxy content of the liquid natural rubber on.the of PVC
  • 3.3.6 Tensile fracture studies by SEM
  • 3.3.6.1 Fractographs of PVC / L-ELNR-50 blends
  • Fig. 3.75. Tensile fractograph of PVC.
  • Fig. 3.76. Tensile fiactograph of PVC/L-ELNR-50 at 70/30 composition
  • Fig. 3.77. Terlsile fiactograph of PVCIL-EI., N K-50 at 50/50 co~i- position
  • Fig. 3.78. Tensile fractograph of PVUL-ELNR-50 at 30J70 compositjon
  • 3.3.6.2 Fractographs of PVC / L-ELNR-20 blends
  • Fig. 3.79. Tensile fi-actograph of PVCL-ELNR-20 at 70/30 cornposition.
  • Fig. 3.80. Tensile fractograph of PVCYL-ELNR-20 at 50/50 composition.
  • 3.3.6.3 Fractographs of PVC / H-ELNR-50 blends
  • Fig. 3.81. Tensile Gactograph of PVC/H-ELhIR-SO at 70/30 cornposition.
  • Fig. 3.82. Tensile fractograph of PVC/H-ELNR-50 at 50/5O co~liposition.
  • 3.3.6.4 Fractographs of PVC / H-ELNR-20 blends
  • Fig. 3.83. Terlsile fiaciogra~ho f PVC/H-ELNR-20 at 70130 colnpositiun.
  • Fig. 3.84. Tensile fiactograph of PVCIH-ELNR-20 at 50150 colnposition.
  • 3.3.7 Tensile Impact behaviour
  • 3.3.7.1 Tensile impact behaviour of PVC / H-ELNR-20 blends
  • 3.3.7.2 Tensile lmpact behaviour of PVC / L-ELNR-20 blends.,.
  • 3.3.7.3 Tensile impact behaviour of PVC / H ELNR-50 blends
  • 3.3.7.4 Tensile impact behaviour of PVC / L-ELNR-50 blends. 3.3 7.5 Effect of molecular weight on the tensile impact stregth of PVC / ELNR system
  • 3.3.7.5 Effect of mdwular welght on me tenslle Impact strength of PVCIELNRs y s h
  • 3.3.7.6 Effect of epoxy content of rubber on the tensile Impact strength
  • 3.3.8 Tensile impact fracture studies by SEM
  • Fig. 3.91. Tensile impact fractograph of PVC.
  • Fig. 3.92. Tensile impact fiactograph of PVCfL-ELNR-50 at 80120 composition.
  • Fig. 3.93. Tensile impact fractograph of PVCL-ELNR-20 at 80120 composition.
  • Fig. 3.94. Tensile impact fractograph of PVC/H-ELNK-20 at R0/20 composition.
  • Fig. 3.95. Tensile impact fractograph of PVCIH-ELNR-50 at 80/20 composition.
  • 3.3.9 Morphological studies of PVC / ELNR blend systems using SEM
  • 3.3.9.1 Blends of PVC / L-ELNR-50
  • Fig. 3.96. Scming electron micrograph of PVC/L-ELNR-50 at 80/20composition.
  • Fig. 3.97. Scanning electron ~nicrograph of PVCIL-ELNR-50 at 70130composition.
  • Fig. 3.98. Scanning electron micrograph of PVCL-ELNK-50 a1 50150composition.
  • 3.3.9.2 Blends of PVC / L-ELNR-20
  • Fig. 3.99. Scanning electron rt~icrograph of PVC/L-EL.NR-20 at 80/30composition.
  • 3.3.9.3 Blends of PVC / H-ELNR-50
  • Fig. 3.100. Scanning electron micrograph of PVC/H-ELN R-50 at 70130composition,
  • 3.3.9.4 Blends of PVC / H-ELNR-20
  • 3.3.9.5 Effect of molecular weight of rubber on the morphology of.PVC / ELNR blends
  • 3.3.9.6 Effect of epoxy content on the morphology of PVC / ELNR blends.
  • 3.4 References
  • 4 Conclusion
  • 4.1 Preparation and characterisation of epoxidised liquid natural rubber (ELNR)
  • 4.2 Compactability studies
  • 4.2.1 Viscosity measurements
  • 4.2.2 Ultrasonic studies
  • 4.3 Thermal
  • 4.4 Characterisation of the blend systems
  • 4.4.1 Thermogravimetric studies of the blends of PVC with ELNR
  • 4.4.2 Tensile
  • 4.4.3 Tensile fracture studies by SEM,
  • 4.4.4Tensile impact behaviour
  • 4.4.5 Tensile impact fracture studies by SEM
  • 4.4.6 MorphologicaI studies of PVC / ELNR system using SEM
  • 4.4.7 observations
  • 4.5 Scope for further studies
  • 4.6 References
  • List of Publications