• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 130
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • PREFACE
  • CONTENTS
  • 1. CRYSTAL GROWTH
  • 1. Introduction
  • 2. Methods of crystal growth
  • 2.1. Solid state growth
  • 2.2. Melt growth
  • 2.3. Growth from solutions
  • 2.4. Growth from vapour phase
  • 3. The role of chemical and geometric parameters on chemical vapour transport
  • 4. Chemical and geometrical parameters
  • 5. Temperature profiles
  • 5.1. Stationary temperature profile
  • 5.2. Linearly time varying temperature profile
  • 5.3. Oscillating temperature profile
  • 6. Advantages of chemical vapour transport
  • 7 Limitations of chemical vapour transport
  • 8.Conclusion
  • References
  • 2. THERMODYNAMICS OF CHEMICAL VAPOUR TRANSPORT
  • 1. Introduction
  • 2. Models of chemical vapour transport
  • 3. Advantages of theoretical work
  • 4. Relevance of thermodynamical analysis of chemical vapour transport
  • 5. Thermodynamical model
  • 6. Thermodynamical feasibility study with elements as the source material and Iodine as the transporting agent (Cu: In or Al or Ga: S or Se or Te: 12) and (Ag: Ga or In: S or Te: I2) systems
  • 7. Thermodynamical feasibility study with elements as the source material and Hydrogen iodide as the transporting agent (Cu: In or Al or Ga: S or Se or Te: HI) and (Ag: Ga or In: S or Te: HI) systems
  • 8. Thermodynamical feasibility of tungsten diselenide single crystals- An exposition f the model using binary system
  • 8.1 Model and calculation results
  • 9.Conclusion
  • Refererrces
  • 3. GROWTH PROCESS OF LAYERED TUNGSTEN DISELENIDE
  • 1. Introduction
  • 2. Practical aspects of crystal growth by chemical vapour transport technique
  • 3. Furnace design
  • 4. Temperature measuring devices
  • 5. Dual temperature controller cum recorder
  • 6. Ampoules
  • 7. Vacuum system
  • 8. Ampoule cleaning
  • 9. Loading of transporting agent and feed material
  • 10. Preparation of polycrystalline WSe2
  • 11. Growth of doped and undoped WSe2 using CVT and DVT
  • Fig. 3.7 Horizontal tubular furnace and sealing unit
  • 12. Effect of temperature gradient on the growth of crystals during chemical vapour transportation
  • 13. Conclusion
  • Refrrences
  • 4. ELECTRICAL AND STRUCTURAL CHARACTERIZATION
  • 1. Introduction
  • 2. Measurement techniques
  • 2.1. Two probe method
  • 2.2. Van der Pauw method
  • 2.3 Hall measurements
  • 3. Hall effect studies on crystals at room temperature
  • 4. Conductivity studies on pure and doped WSe2 crystals
  • 5. Nature of charge carrier concentration about the transition
  • 6.X-ray powder diffraction technique
  • 7.Energy Dispersive Analysis of X-ray (EDAX)
  • 8.Conclusion
  • References
  • 5. MICROHARDNESS STUDIES
  • 1. Introduction
  • 2. Methods of hardness test
  • 2.1. Static indentation test
  • 2.2. Scratch test
  • 2.3. Rebound test
  • 2.4. Plaughing test
  • 2.5. Damping test
  • 2.6. Cutting test
  • 2.7. Abrasion test
  • 2.8. Erosion test
  • 3. Rockwell test
  • 4. Brinell test
  • 5. Mayers test
  • 6. Vickers test
  • 7. Knoop test
  • 8. Measurement corrections
  • 9. Experimental details
  • 10. Results and discussions
  • 10.1. Hardness variation
  • Fig. 5.2 Leitz Miniload 2 hardness tester
  • Fig. 5.3 lmpression for the load 5gm after etching
  • Fig. 5.4 lmpression for the load l0gm after etching
  • Fig. 5.5 lmpression for the load 15gm after etching
  • Fig. 5.6 Impression for the load 25gm after etching
  • Fig. 5.7 lmpression for the load 50gm after etching
  • 10.2. Etching studies
  • 10.3. Application of idea of resistance pressure to the crystals
  • 11. Conclusion
  • References
  • 6. MICROTOPOGAPHICAL STUDIES
  • 1. Introduction
  • 2. Optical microscopy
  • 3. SEM studies
  • Fig. 6.1 Hexagonal growth spiral
  • Fig. 6.2 Layer morphology of a bulk crystal
  • Fig. 6.3 & 6.4 Hexagonal and elongated hexagonal structures
  • Fig. 6.5 Typical growth patterns on doped crystal
  • Fig. 6.6 & 6.7 Dislocation groups with large burges vectors
  • Fig. 6.8 Twisted plate
  • Fig. 6.9 Cartoon of overlapping growth
  • Fig. 6.10 Two dimensional growth
  • Fig. 6.11 Layer stacking sequences
  • Fig. 6.12 Bunches of layers
  • Fig. 6.13 Overlapping of layers
  • Fig. 6.14 Microcrystals on growing face
  • Fig. 6.15 Typical etch pattern on (0001) plane
  • Fig. 6.16 6.19Etching behavior
  • 4. Etching studies
  • 4.1. Experimental
  • 5.Conclusion
  • References
  • SCOPE OF FUTURE RESEARCH
  • References