HOME
Search & Results
Full Text
Thesis Details
Page:
247
Full Screen
TITLE
DEDICATION
CERTIFICATE
DECLARATION
ACKNOWLEDGEMENT
GLOSSARY OF TERMS
CONTENTS
1. lntroductiorr
1.1 Historical background
1.2 Fundamentals of transport phenomena
1.3 Sorption, diffusion and permeation of organic liquids, organic vapour and gaseous molecules
1.3.1 Organic liquids
1.3.2 Vapours
1.3.3 Gas transport
1.4 Factors affecting sorption, diffusion and permeation
1.4.1 Nature of the polymer
(a) Rubbery polymer
(b) Classy polymers
1.4.2 Permeant size and shape
1.4.3 Temperature
1.4.4 Polymer glass transition temperature
1.4.5 Cross linking, orientation and crystallinity
1.5 Liquid separation by membrane pervaporation.
Fig. 1.10. Schematic diagram of the pervaporation process: (a) vacuum pervaporation and (b) purge gas pervaporarion.120
1.5.1 Mass transport in membranes
Fig. 1.11. Schematic representation of solufion-diffusion model for pervaporation 120
Fig. 1.12. Schematic represenlalion of the pore flow model for pervaporation.120
1.6 Scope of the work
1.7 References
2. Materials and Experimental Techniques
2.1 Materials used
Table 2.1. Specifications of ISNR-5, ENR-25 and ENR-50.
2.1.1 Rubber chemicals
2.1.2 Fillers
Table 2.2. Characteristics of black fillers.
2.1.3 Solvents
Table 2.3. Physical properties of solvents
2.2 Preparation of rubber compounds
Table 2.4. Formulation of the mixes (phr)
2.2.1 Compounding of mixes
2.2.2 Blend preparation
2.2.3 Curing of the samples
2.2.4 Moulding of samples.
2.3 Sorption experiments
2.4 Vapour permeation
2.5 Gas permeation
2.6 Pervaporation
2.7 Estimation of gel content-
2.8 Bound rubber measurements
2.9 Blend morphology
2.10 Physicomechanical testings
2.11 References
3. Effect of Epoxidation on theTransport Behaviour and Mechanical Properties of Natural Rubber
3.1 Results and discussion
3.1.1 Processing characteristics
Fig. 3.1. Rheoqaph of NR, ENR-25 and ENR-SO.
3.1.2 Effect of epoxidation
Fig. 3.7. Surface morphology of NR, ENR-25 and ENR-50
3.1.3 Mechanism of diffusion
Table 3.3. Values of n and k.
3.1.4 Sorption, desorption, resorption and redesorption (S-D-RS-RD)
3.1.5 Diffusivity
Table 3.5. Diffusion coefficient D X 10 (cm2/s)
Fig. 3.11. Structure of NR cmd ENR
3.1.6 Kinetics of diffusion
Table 3.6. Rate constant values k X 102 (min.)
3.1.7 Sorption and permeation coefficients
Table 3.7. Values of S and P
3.1.8 Activation parameters
Fig. 3.13. Arrhenius plot of log D vs. I/T
3.1.9 Enthalpy and entropy of sorption
Fig. 3.14. Vant Hoff plot of log K, vs. 1/T.
3.1.10 Interaction parameter
3.1.11 Comparison with theory
3.1.12 Mechanical properties.
Stress-strain behaviour
3.2 References
4. Effect of Nature of Cross links on Transport through Epoxidised Natural Rubber
4.1 Results and discussion
4.2 References
5. Transport of Benzene and Methyl Substituted Benzenes through Carbon Black Filled Epoxidised Natural Rubber
5.1 Results and discussion
5.1.1 Cure characteristics
5.1.2 Transport studies
Fig. 5.5. Schematic model of carbon black aggregaiions in ENR mairix.
Fig. 5.6. Schematic model of unswollen and swollen unfilled ENR marrix andfilled ENR matrix.
Fig. 5.8. Surface morphology of ENR with 30 phi- SRF loading: (a) unswollenand (b) deswollen.
Table 5.9. Permeation coefficient (P X lo4) (cm2 sec
5.1.3 Sorption (S) -desorption (D) -resorption (RS) -redesorption (RD)
Fig. 5.16. Theoretical curves for HAF at different concenhations in toluene (a) 10phr. (b) ZOphr, and (c) 30phr.
5.2 References
6. Transport Behaviourand Mechanical Properties of Natural Rubber/ExpoxIdised Natural Rubber-25 Blends
6.1 Results and discussion
6.1.1 Cure characteristics
6.1.2 Transport properties
(a) Effect of blend composition
(b) Diffusivity
Fig. 6.5. Variation of D with volume fraction r?f NR in different solvents at27°C
(c) Kinetics of diffusion
(d) Temperature effects and activation parameters
(e) Interaction parameter
6.1.3 Determination of the network structure
6.1.4 Mechanism of sorption
6.1.5 Sorption (S) -desorption (D) -resorption (RS) -redesorption (RD)
6.1.6 Mechanical properties
(a) Model fitting
6.2 References
7. Transport of Chlorinated Hydrocarbon Vapours through Natural Rubber, Epoxidised Natural Rubber and their Blends
7.1 Results and discussion
7.1.1 Effect of epoxidation
7.1.2 Blend morphology
Fig. 7.3. SEM phorographs of NR/ENR-25 blends: (a) 70/30, (b) 50/50 arid (c) 30/70.
7.1.3 investigation of the blend morphology
7.2 References
8. Nitrogen / Oxygen Permeability of Natural Rubber, Epoxidised Natural Rubber and Natural Rubber/Epoxidised Natural Rubber Blends
8.1 Results and discussion
8.1.1 Gas permeability of NR / ENR blends
8.1.2 Comparison of pure gas permeability of NR / ENR blends with models for permeation in heterogeneous media
Fig. 8.8. Schematic model representing (a) Maxwell model and (h) Bruaemanmodel.
8.1.3 Effect of blend composition on oxygen-to-nitrogen selectivity
8.2 References
9. Effect of Epoxidation of Natural Rubber on the Penraporation Separation of Acetondchlorinated Hydrocarbon Mixtures
9.1 Results and discussion
9.1.1 Swelling behaviour of cross linked membranes
9.1.2 Pervaporation analysis
(a) Effect ofepom datratron
Fig. 9.6. Schematic model representing the permeation of solvent moleculesthrough NR, ENR-25 and ENR-50.
(b) Effect of feed composition
(c) Effeect of penetrunt size
9.2 References
10. Separation of Acetone-Chlorinated Hydrocarbon Mixtures through Polymer Blend Membranes of Natural Rubber and Epoxidised Natural Rubber
10.1 Results and discussion
10.1.1 Swelling degree
10.1.2 Pervaporation analysis
(a) Effect of blend composition
(b) Influence of the feed composition
(c) Effect of penetrunt size
10.2 References
11. Conclusion
11.1 Future outlook.
APPENDIX
List of Publications
Curriculum Vitae
Diffusivity, Permeability, and sorptivityof Benzene and Substituted BenzenesThrough Crosslinked EpoxidizedNatural Rubber
ABSTRACT
INTRODUCTION
EXPERIMENTAL
RESULTS AND DISCUSSION
CONCLUTION
ACKNOWLEDGEMENT
REFERENCES