• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 187
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • Preface
  • 1. CRYSTAL GROWTH: THEORY AND TECHNIQUES
  • 1.1 Introduction
  • 1.2 The Thermodynamics of Crystal Growth
  • 1.3 Nucleation
  • Fig. I. 1 Free energy change of nucleus as a function of radius
  • 1.4 Crystal Growth Theories
  • 1.4.1 Surface energy theory
  • 1.4.2 Diffusion theory
  • 1.4.3 Surface nucleation model
  • Fig. 1.2 Possible lcttice sites for the attachment of absorbed atom
  • 1.4.4 Screw dislocation theory
  • Fig. 1.3 Development of a spiral
  • 1.5 Crystal Growth Techniques
  • 1.5.1 Solid growth techniques
  • 1.5.2 Growth from vapour
  • Physical vapour transport (PVT) )
  • Chemical vapour transport
  • 1.5.3 Melt growth technique
  • 1.5.4 Growth from solution
  • High temperature solution growrh
  • Hydrothermal methods
  • Low temperature solution growth
  • The gel method
  • References
  • 2. RARE EARTH OXALATE CRYSTALS AND GEL TECHNIQUES
  • 2.1 Introduction
  • 2.2 History of Gel Method
  • 2.3 Preparation of Hydrosilica Gel
  • 2.4 The Mechanism of Gelation and the Structure of Gel
  • 2.5 Advantages of Gel Medium
  • 2.6 Crystallization in the Gel Medium
  • 2.6.1 The chemical reaction method
  • 2.6.2 Chemical reduction method
  • 2.6.3 Solubility reduction method
  • 2.6.4 Complex dilution method
  • Fig.2. 1 Crystallization by chemical reaction method.
  • 2.7 Nucleation Control Methods
  • References
  • 3. EXPERIMENTAL TECHNIQUES IN CHARACTERIZATION
  • 3.1 Introduction
  • 3.2 Optical Microscopy
  • 3.3 Atomic Force Microscopy
  • Fig.3.1 Nanoscope 1 1 1 Block Diagram with AFM.
  • 3.4 Micro Hardness Studies
  • 3.5 X-ray Diffraction Methods
  • 3.6 Infrared Spectroscopy
  • 3.7 UV-Visible-Near Infrared Spectroscopy
  • 3.8 Thermal Analysis
  • 3.9 Electron Spectroscopy for Chemical Analysis
  • 3.10 Energy Dispersive Analysis by X-rays (EDAX)
  • 3.11 Vibrating Sample Magnetometer
  • References
  • 4. THE GROWTH PROCESS
  • 4.1 Introduction
  • 4.2 The Chemistry of Reactions
  • 4.3 Hydrosilica Gel as the Medium of Growth
  • 4.4 Preparation of the Gel
  • Fig.4.1 Specific gravity of SMS solution Vs partial volume of water.
  • Fig. 4.2 Gelation period vs. pH of the medium
  • 4.5 Preparation of the Supernatant Solution
  • 4.6 Growth of Praseodymium Samarium Oxalate (PSO) Crystals
  • 4.7 Growth of Neodymium Praseodymium Oxalate (NPO) Crystals
  • Fig.4.3 Growth system of NPO crystals under different stoichiometry
  • Fig.4.4 Growth system of NSO crystals under different stoichiometry
  • 4.8 Growth of Neodymium Samarium Oxalate (NSO) Crystals
  • 4.9 The Growth Kinetics
  • Fig. 4.5 Nucleation density for different gel density
  • 4.9.1 Effect of gel density
  • Fig. 4.6 Variation of nucleation density with pH of the gel
  • 4.9.2 Effect of pH of the gel
  • Fig. 4.7 Variation of nucleation density with age of the gel
  • 4.9.3 Effect of ageing of the get
  • Fig. 4.8 Variation of nucleation density with concentration of the feed solution
  • 4.9.4 Effect of concentration of the reactants
  • Fig. 4.9 Variation of nucleation density with acidityin feed solution
  • 4.9.5 Effect of acidity of the feed solution
  • Fig. 4.10 Movement of crystalization zone withacid content in the feed solution
  • Fig.4.11 Growth system of PSO crystals with different acid concentration in the feed solution
  • Fig.4.12 Growth system of PSO crystal under concentration
  • 4.9.6 Concentration programming
  • CONCLUSION
  • References
  • 5. MICROTOPOGRAPHICAL STUDIES
  • 5.1 Introduction
  • 5.2 Morphology of the Crystals
  • 5.3 Microscopic Studies
  • Fig.5.1 (100) face of PSO crystal with thin growth layer
  • Fig.5.2 (100) face of PSO crystal with thick growth layer (x 50)
  • Fig 5.3 Interaction of a thick growth layer on (100) face (x 200)
  • Fig.5.4 Mottled nature of (100) face
  • Fig 5.5. Crystallise aggregates in (100) face (x 200)
  • Fig.5.6 Impression of a detached foreign crystal (x100)
  • 5.4 Micro topography by AFM
  • Fig.5.7 AFM photograph showing nanolayers and crack of NPO crystal
  • Fig 5.8 AFM photograph of a large crack on the surface of NPO crystal
  • Fig 5.9. AFM photograph of parallel cracks on the surface of NPO crystal
  • Fig.5.10 AFM photograph spreading layers on the surface of NPO crystal
  • Fig 5.11 AFM photograph showing hillocks on the surface of PSO crystal
  • Fig.5.12 AFM photograph showing cluster of hillocks on the surface of PSO crystal
  • 5.5 Etching Studies
  • 5.5.1 Formation of dislocation etch pits
  • 5.5.2 Dislocation study of the crystals
  • 5.5.3 Cleavage surfaces
  • 5.5.4 Selection of the etchant
  • 5.5.5 Etch pits on (100) face
  • Fig 5.13 Cleaved matched face of PSO crystal (x 50)
  • Fig 5.14 General nature of etch pits on (100) face (x 200)
  • Fig.5.15 (100) face etched for 20 seconds (x 50)
  • Fig.5.16 Continuous etching of (100) face for 40 seconds (x 50)
  • Fig.5.17. Continuous etching of (100) face for 60 seconds (x 50)
  • 5.5.6 Etching of (110) face
  • 5.5.7 Etching of cleaved surface
  • Fig.5.18 (110) face etched for 20 seconds (x 200)
  • Fig.5.19 Continuous etching of (110) face for 40 seconds (x 200)
  • Fig.5.20 Continuous etching of (110) face for 60 seconds (x 200)
  • Fig 5.21 Eccentric etch pits on (110) face (x 200)
  • Fig.5.22 Etch pits on a cleaved surface (x 100)
  • Fig.5.23 Etch pits on the cleaved matched surface (x 100)
  • 5.5.8 Discussion on etching studies
  • 5.6 Micro hardness Studies
  • 5.6.1 Micro hardness studies of mixed rare earths oxalate Crystals
  • Fig. 5.24 Variation of microhardness with applied load
  • References
  • 6. CHARACTERIZATION OF THE CRYSTALS
  • 6.1 X-ray Analysis
  • 6.1.1 Lattice parameters of PSO crystals
  • Fig.6.1 X-ray powder diffraction patterns of PSO crystals
  • Table 6. I. X-ray powder diffraction data for PrSrn (C2O4) 3 10 H20.
  • 6.1.2 Lattice parameters of NPO crystals
  • Fig.6.2 X-ray powder diffraction patterns of NPO crystals
  • Table 6.2. X-ray powder diffraction data for NdPr (C204) 3 10 H20.
  • 6.1.3 Lattice parameters of NSO crystals
  • Fig.6.3 X-ray powder diffraction piitterns of NSO crystals
  • Table 6.3. X-ray powder diffraction data for NdSm (C2O4) 3 10 H20.
  • Table 6.4. Comparative study of the lattice parameters of single and mixed rare earth oxalate crystals with La2 (c2o4) 3. 10H2O.
  • 6.2 Infrared Absorption Studies
  • Table 6.5. Expected modes of vibration.
  • 6.2.1 Water vibrations
  • 6.2.2 Oxalate vibrations
  • 6.2.3 Metal-oxygen vibrations
  • 6.3 Thermal Analysis
  • 63.1 Thermal analysis of PrSm (C2O4) 310H2O
  • 6.3.2 Thermal analysis of NdPr (C2O4) 3 10H2O
  • 6.3.3 Thermal analysis of NdSm (C2O4) 3. 10H2O
  • 6.4 XPS Studies
  • 6.4.1 XPS of PSO
  • 6.4.2 XPS of NPO
  • 6.4.3 XPS of NSO
  • 6.5 Energy Dispersive X-ray Analysis (EDAX)
  • 6.5.1 EDAX of PSO
  • 6.5.2 EDAX of NSO
  • 6.5.3 EDAX of NPO
  • 6.6 Magnetic Susceptibility Measurements
  • References
  • 7. LASER INTENSITY PARAMETERS OF NdPr (C2O4) 3.I0H2O
  • 7.1 Introduction
  • 7.2 The Rare Earth Ions
  • 7.3 Optical Absorption Studies
  • 7.4 Oscillator Strength
  • Fig.7.1 Visible absorption spectrum of NPO crystals
  • Fig.7.2 NIR absorption specma of NPO crystals
  • Tabel 7.1 Energy values and oscillator strengths of Nd3+ ions in the crystal.
  • Table 7.2 Energy values and oscillator strengths of pr3+ ions in the crystal.
  • 7.5 Spectroscopic Parameters
  • 7.6 Judd-Ofelt Model
  • Table 7.3 Calculated spectral parameters of Nd3+ and pr3+ ions in the crystal.
  • 7.7 Radiative Properties
  • 7.8 Results and Discussion
  • Table 7.4 Calculated values of Sed, Smd A, AT, ҐR, βR and σa for Nd3+ ion in the crystal.
  • 7.8.1 Radiative properties of Nd3+ ion in NPO
  • 7.8.2 Radiative properties of Pr3+ ion
  • 7.9 Conclusions
  • References
  • 8. GENERAL CONCLUSION