• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 352
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • PREFACE
  • List of Publications
  • 1. BRIEF REVIEW OF THE EARLIER WORK ON SULPHIDE AND PHTHALQCYANINE THIN FILMS
  • 1.1. Introduction
  • 1.2. Metallic Sulphides
  • 1.3. Organic Semiconductors
  • 1.4. Molecular Structure
  • Fig. 1.4.1 Basic structural unit of a metal substituted phthalocyanine molecule
  • Fig.1.4.2 Normal projection of two molecules of the metal substituted phthalocyanine
  • Fig.1.4.3 Wurtzite (ZnS) structure
  • Fig.1.4.4 Sphalerite (ZnS) structure
  • 1.5. Earlicr Studies on Multilayer Films
  • References
  • 2. APPARATUS AND EXPERIMENTAL TECHNIQUES USED IN THE PRESENT STUDY
  • 2.1. Introduction
  • 2.2. Methods of Preparation of Thin Films
  • 2.3. Chemical Bath Deposition Technique
  • 2.4. Thermal Evaporation Technique
  • 2.5. Effect of Residual Gases
  • 2.6. Effect of Vapour Beam Intensity
  • 2.7. Effect of Substrate Surface
  • 2.8. Effect of Evaporation Rate
  • 2.9. Contamination from Vapour Source
  • 2.10. Production of Vacuum
  • 2-11. Oil Sealed Rotary Pump
  • 2.12. Diffusion Pump
  • Fig.2.1 2.1 Schematic diagram of the cross section of a diffusion pump
  • 2.13. Vacuum Coating Unit
  • Fig.2.13.1 Schematic diagram of a vacuum coating unit
  • Fig. 2.1 3 -2 Schematic representation of Pirani gauge
  • Fig.2.13.3 Schematic representation of Penning gauge
  • Fig.2.13.4 Photograph of the coating unit along with the accessories
  • 2.14. Preparation of Films
  • 2.15. Substrate Cleaning
  • 2.16, Thickness Measurement
  • 2.17. Tolanskys Multiple Beam Fizeau Fringe Method
  • 2.18. Sample Annealing
  • Fig. 2.1 8.1 Block diagram of the temperature controller cum recorder
  • Fig. 2.18.2 Photograph of the annealing furnace and controller cum recorder set up
  • 2.19. Conductivity Cell
  • Fig. 2.19.1 Schematic diagram of the cross section of the conductivity cellI.
  • 2.20. Keithley PrograrnmabIe Electrometer 61 7
  • Fig.2.20.1 Schematic diagram of electrical conductivity measurement
  • Fig.2.20.2 Photograph of the electrical conductivity experimental set up
  • 2.21. UV-Visible Spectrophotometer
  • Fig.2.21.1 Block diagram of the optical system of the spectrophotometer
  • Fig. 2.21.2 Block diagram of the electrical system of the spectrophotometer
  • Fig. 2.2 1.3 Photograph of the Shirnadzu 160A spectrophotorneter
  • 2.22. X-ray Diffractometer
  • Fig. 2.22.1 Block diagram of XD PW 3710 BASED diffractometer
  • References
  • 3. PREPARATION OF SINGLE AND MULTILAYER THIN FILMS OF CdS, ZnS, MnS and CuPc
  • , 3.1. Introduction
  • 3.2. CdS Single Films by Chemical Bath Deposition Technique
  • 3.3. ZnS Single Films by Chemical Bath Deposition Technique
  • 3.4. MnS Single Films by Chemical Bath Deposition Technique
  • 3.5. ZnS-MnS Multilayer Films by Chemical Bath Deposition Technique
  • 3.6. CuPc Single Films by Vacuum Deposition Technique
  • 3.7. CuPc Multilayer Films by Vacuum Deposition Technique
  • References
  • 4. ELECTRICAL CONDUCTIVITY STUDIES IN SINGLE AND MULTILAYER THIN FILMS OF CdS, ZnS, MnS and CuPc
  • 4.1. Introduction
  • 4.2. Theory
  • 4.3. Experiment
  • 4.4. Results and Discussion
  • 4.5. Conclusion
  • References
  • 5. OPTICAL ABSORPTION STUDIES IN SINGLE AND MULTILAYER THIN FILMS OF CdS, ZnS, MnS and CuPc
  • 5.1. Introduction
  • 5.2. Theory
  • 5.3. Experiment
  • 5.4. Results and Discussion
  • 5.5. Conclusion
  • References
  • 6. STRUCTURAL STUDIES IN SINGLE AND MULTILAYER THIN FILMS OF CdS, ZnS, MnS and CuPc
  • 6.1. Introduction
  • 6.2. Theory
  • 6.3. Experiment
  • 6.4. Results and Discussion
  • 6.5 Conclusion
  • References
  • 7. SUMMARY AND CONCLUSION