• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 219
 
Full Screen

  • TITLE
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • PREFACE
  • 1. A BRIEF REVIEW OF THE ELECTRICAL, OPTICAL AND STRUCTURAL STUDIES ON PHTHALOCYANINE THIN FILMS
  • 1.1 Introduction
  • 1.2 Organic Semiconductors
  • 1.3 Molecular Structure
  • Fig.1.3.2. Unit cell of a base centred phathalocyanine molecule
  • 1.4 Electrical Studies
  • 1.5 Optical Studies
  • 1.6 Structural Studies
  • References
  • 2. APPARATUS AND EXPERIMENTAL TECHNIQUES
  • 2.1 Introduction
  • 2.2 Methods of Preparation of Thin Films
  • 2.3 Thermal Evaporation Technique
  • 2.4 Effect of Residual gases
  • 2.5 Effect of Vapour Beam Intensity
  • 2.6 Effect of Substrate Surface
  • 2.7 Effect of Evaporation Rate
  • 2.8 Contamination from Vapour Source
  • 2.9 Purity of the Evaporating Materials
  • 2.10 Production of vacuum
  • 2.11 Oil Sealed Rotary Pump
  • Fig.2.11 Schematic diagram of the cross section of an oilsealed rotary pump
  • 2.12 Diffusion Pump
  • Fig.2.12 Schematic diagram of the cross section of adiffusion pump
  • 2.13 Vacuum Coating Unit
  • Fig.2.13.1 Schematic diagram of a vacuum coating unit
  • Fig.2.13.2 Schematic representation of Pirani gauge
  • Fig. 2.13.3 Schematic representation of Penning gauge
  • Fig.2.13.4 Photograph of the coating unit along with theaccessories
  • 2.14 Preparation of Films
  • 2.15 Substrate Cleaning
  • 2.16 Substrate Heater
  • 2.17 Sample Annealing
  • Fig. 2.17.1 Block diagram of the temperature controller cumrecorder
  • Fig. 2.17.2 Photograph of the furnace and controller cumrecorder set up
  • 2.18 Thickness Measurement
  • 2.19 Tolanskys Multiple Beam Interference Technique
  • Fig.2.19 Schematic representation of the multiple beam interference technique
  • 2.20 Conductivity Cell
  • Fig. 2.20.1 Schematic diagram of the cross section of theconductivity cell
  • 2.21 Keithley Programmable Electrometer 617
  • Fig.2.21.l (a) Schematic diagram of measuring resistance onKeithley using ohms function
  • Fig.2.21.2 Schematic diagram of electrical conductivitcgmeasurement (all dimensions are in mm)
  • Fig.2.21.3 Photograph of the electrical conductivityexperimental set up
  • 2.22 UV-Visible Spectrophotometer
  • Fig. 2.22.1 Block diagram of the optical system ofSpedrophotometer (Shimadzu 160A)
  • Fig. 2.22.2 Block diagram of the electrical system of the spectrophotometer
  • Fig. 2.22.3 Photograph of the Shimadzu 160A Spectrophotometer
  • 2.23 X-ray Diffractometer
  • References
  • 3. ELECTRICAL CONDUCTIVITY STUDIES ON LEAD PHTHALOCYANINE, ZINC PHTHALOCYANINE AND MAGNESIUM PHTHALOCYANINE THIN FILMS
  • 3.1 Introduction
  • 3.2 Theory
  • 3.2.A Intrinsic Excitation
  • 3.2.B Defect Excitation
  • 3.2.C Injection of Carriers from Electrodes
  • 3.2.D Band Model for Amorphous Materials
  • 3.2.E Hopping Conduction
  • 3.3. Experiment
  • 3.4 Results and Discussion
  • 3.4. A Dependence of Film Thickness
  • 3.4. B Dependence of Substrate Temperature
  • 3.4. C Dependence of Air-annealing
  • 3.4. D Dependence of Vacuum-annealing
  • 3.4.E Variable Range Hopping
  • 3.5 Conclusion
  • References
  • 4. OPTICAL STUDIES ON LEAD PHTHALOCYANINE, ZINC PHTHALOCYANINE AND MAGNESIUM PHTHALOCYANINE THIN FILMS
  • 4.1 Introduction
  • Fig. 4.1 The schematic diagram of energy levels in metalphthalocyanine and the various allowed transitions
  • 4.2 Theory
  • 4.3 Experiment
  • 4.4 Results and Discussion
  • 4.5 Conclusion
  • References
  • 5. X-RAY DIFFRACTION STUDIES ON LEAD PHTHALOCYANINE, ZINC PHTHALOCYANINE AND MAGNESIUM PHTHALOCYANINE THIN FILMS
  • 5.1 Introduction
  • 5.2 Theory
  • 5.3 Experiment
  • 5.4 Results and Discussion
  • 5.4.A Effect of Substrate Temperature
  • 5.4.B Effect of Vacuum-annealing
  • 5.5 Conclusion
  • References
  • 6. SUMMARY AND CONCLUSION