• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 243
 
Full Screen

  • TITLE 1
  • TITLE 2
  • DEDICATION
  • DECLARATION
  • CERTIFICATE
  • PREFACE
  • ACKNOWLEDGEMENT
  • CONTENTS
  • 1 INTRODUCTION
  • 2 MATERIALS AND METHODS
  • 2.1 Physico-chemical characteristics of water in the study sites
  • 2.1.1 Temperature
  • 2.1.2 pH
  • 2.1.3 Salinity
  • 2.1.4 Dissolved oxygen
  • 2.1.5 Hydrogen sulphide
  • 2.1.6 Carbondioxide
  • 2.1.7 Biological Oxygen Demand (BOD)
  • 2.1.8 Hardness
  • 2.1.9 Alkalinity
  • 2.1.10 Total dissolved solids (TDS) and electrical conductivity (EC)
  • 2.1.11 Turbidity
  • 2.1.12 Nitrate
  • 2.1.13 Phosphate
  • 2.1.14 Silicate
  • 2.1.15 Primary productivity
  • 2.2 Phytoplankton study
  • 2.3 Bioassay procedures
  • 2.3.1 lsolation of test organism
  • 2.3.2 Culture conditions
  • 2.3.3 Growth measurements
  • 2.3.3.1 Measurement of cell concentration
  • 2.3.3.2 Measurement of productivity
  • 2.3.3.3 Quantitative estimation of algal pigments
  • 2.3.3.4 Estimation of biochemical compounds
  • 1. Protein
  • 2. Carbohydrate
  • 2.4 Photography
  • 2.5 Statistical analysis
  • Fig. 2.1 Map of Kerala State in India, showing study Area
  • Fig. 2.2 Back water stream of Cochin showing the study area
  • Plate 2.1.a Stock cultures of test organism
  • Plate 2.1.b Experimental set up
  • Plate 2.2.a Station I - Retting area (Mls Poothotta Coir Mats 3and Mattings Co - operative Society Ltd. No. 334)
  • Plate 2.2.b Retting pit
  • Plate 2.3.a Raw material for liming in the boats near the kiln
  • Plate 2.3.b Raw material taken to the factory
  • Plate 2.4.a Cleaning of raw material
  • Plate 2.4.b Liming industry effluent outlet
  • Plate 2.5.a Liming industry (Mls Chemtech Industries)
  • Plate 2.5.b Kiln
  • Plate 2.6.a Fish peeling inside the shed (Mls PoopanaSeafoods, Palluruthy)
  • Plate 2.6.b Outlet of peeling shed
  • Plate 2.7.a Water body near peeling shed showing froth
  • Plate 2.7.b Water body near peeling shed showing solid waste
  • Piate 2.8 Control station
  • 3 OBSERVATION AND RESULTS
  • 3.1 Effect of cottage industry effluents on water quality
  • 3.1.1 Temperature
  • 3.1.2 Hydrogen Ion concentration - pH
  • 3.1.3 Salinity
  • 3.1.4 Dissolved oxygen
  • 3.1.5 Carbondioxide
  • 3.1.6 Hydrogen sulphide
  • 3.1.7 BOD
  • 3.1.8 Hardness
  • 3.1.9 Alkalinity
  • 3.1.10 Total dissolved solids (TDS)
  • 3.1.11 Electrical conductivity
  • 3.1.12 Turbidity
  • 3.1.13 Nitrate - nitrogen
  • 3.1.14 Phosphate - phosphorus
  • 3.1.15 Silicate - silica
  • 3.1.16 Primary productivity
  • 3.1.17 Phytoplankton distribution in study sites
  • 3.2 Analysis of effluents
  • 3.2.1 Analysis report of retting effluent
  • 3.2.2 Analysis report of liming effluent
  • 3.2.3 Analysis report of peeling shed effluent
  • 3.3 lmpact of cottage industry effluents on phytoplankton
  • 3.3.1 Impact of retting effluent on Chlorella ellipsoidea Gerneck
  • 3.3.2 Impact of liming industry effluent on Chlorella ellipsoidea Gerneck
  • 3.3.3 Impact of peeling shed effluent on Chlorella ellipsoidea Gerneck
  • Table 3.1 ANOVA tables for different parameters and seasons for retting zone
  • Table 3.2 ANOVA tables for different parameters andseasons for liming zone
  • Table 3.3 ANOVA tables for different parameters andseasons for peeling shed zone
  • Table 3.4 ANOVA tables for different parameters andseasons for control zone
  • Table 3.5 ANOVA tables for different parameters and stations
  • Table 3.15 ANOVA tables showing the effect of retting effluent on the growth, pigment content and bio-chemical compoundsof Chlorella ellipsoidea Gerneck-between concentrations
  • Table 3.16 ANOVA tables showing the effect of retting effluent onthe carbon production of Chlorella ellipsoidea Gerneckbetween concentrations
  • Table 3.17 ANOVA tables showing the effect of retting effluent onthe growth, pigment content and bio-chemical compoundsof Chlorella ellipsoidea Gerneck - between duration
  • Table 3.18 ANOVA tables showing the effect of retting effluent onthe carbon production of Chlorella ellipsoidea Gerneckbetween duration
  • Table 3.19 ANOVA tables showing the effect of liming effluent onthe growth, pigment content and bio-chemical compoundsof Chlorella ellipsoidea Gerneck-between concentrations
  • Table 3.20 ANOVA tables showing the effect of liming effluent onthe carbon production of Chlorella ellipsoidea Gerneckbetween concentrations
  • Table 3.21 ANOVA tables showing the effect of liming effluent onthe growth, pigment content and bio-chemical compoundsof Chlorella ellipsoidea Gerneck - between duration
  • Table 3.22 ANOVA tables showing the effect of liming effluent onthe carbon production of Chlorella ellipsoidea Gerneckbetween duration
  • Table 3.23 ANOVA tables showing the effect of peeling shed effluenton the growth, pigment content and bio-chemical compoundsof Chlorella ellipsoidea Gerneck - between concentrations
  • Table 3.24 ANOVA tables showing the effect of peeling shed effluenton the carbon production of Chlorella ellipsoidea Gerneckbetween concentrations
  • Table 3.25 ANOVA tables showing the effect of peeling shed effluenton the growth, pigment content and bio-chemical compoundsof Chlorella ellipsoidea Gerneck - beween duration
  • Table 3.26 ANOVA tables showing the effect of peeling shed effluenton the carbon production of Chlorella ellipsoidea Gerneckbetween duration
  • Fig.3.1 Atmospheric Temperature in the study sites
  • Fig.3.2 Water Temperature in the study sites
  • Fig.3.3 pH in the study sites
  • Fig.3.4 Salinity In the study sites
  • Fig.3.5 Dissolved Oxygen in the study sites
  • Fig.3.6 Carbon dioxide in the study sites
  • Fig.3.7 Hydrogen sulphide in the study sites
  • Fig.3.8 BOD in the study sites
  • Fig.3.9 Hardness in the study sites
  • Fig.3.10 Alkalinity in the study sites
  • Fig.3.11 TDS in the study sites
  • Fig.3.12 Electrical Conductivity in the study sites
  • Fig.3.13 Turbidity in the study sites
  • Fig.3.14 Nitrate in the study sites
  • Fig.3.15 Phosphate in the study sites
  • Fig.3.16 Silicate in the study sites
  • Fig.3.17 GPP in the study sites
  • Fig.3.18 NPP in the study sites
  • Fig.3.19 Impact of effluents on the growth of Chlorella ellipsoidea, Gerneck
  • Fig.3.20 lmpact of retting effluent on the pigment content of Chlorelln ellipsoiden, Gerneck
  • Fig.3.21 Impact of liming effluent on the pigment content of Chlorella ellipsoidea, Gerneck
  • Fig.3.22 Impact of peeling shed effluent on the pigment content of Chlorella ellipsoidea, Gerneck
  • Plate 3.1a Scenedesmus bijuga
  • Plate 3.1b Coscinodiscus sp.
  • Plate 3.1c Thallasionema sp.
  • Plate 3.1d Thallasiosira sp.
  • Plate 3.1e Bacillaria paradoxa
  • Plate 3.1f Triceratium sp.
  • Plate 3.2a Skeletonerna costaturn
  • Plate 3.2b Melosira sulcata
  • Plate 3.2c Rhizosolenra styliformis
  • Plate 3.2d Arnphiphora gigantea
  • Plate 3.2e Pleurosigma elongaturn
  • Plate 3.2f Chlorella ellipsoidea
  • Plate 3.3 (a - f) (a) Oscillatoria sp. (b) Spirogyra sp. (c) Navicula longata (d) Nitzschia panduriformis (e) Zygnema sp. (f) Nitzschia seriata
  • Plate 3.4 (a - h) (a) Pinnularia sp. (b) Pediastrum sp. (c) Tetraedron sp. (d) Chlorella sp. (e) Cyclotella sp. (f) Ankistrodesmus sp. (g) Micrasterias sp. (h) Agmenellum sp.
  • Plate 3.5 (a - h) (a) Anacystis sp. (b) Melosira sp. (c) Synedra sp. (d) Skeletonema sp. (e) Desmidium sp. (f) Spirogyra sp. (g) Zygnema sp. (h) Nitzschia sp.
  • Plate 3.6 Effect of effluents on Chlorella ellipsoidea Gerneck
  • a Chlorella ellipsoidea Gerneck in Ward and Parishmedium (Control)
  • b. Chlorella ellipsoidea Gerneck in 80% rettingeffluent
  • c. Chlorella ellipsoidea Gerneck in 80% limingindustry effluent
  • d Chlorella ellipsoidea Gerneck in 10% peelingshed effluent
  • 4 DISCUSSION
  • 5 CONCLUSION
  • SUMMARY
  • BIBLIOGRAPHY