• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 198
 
Full Screen

  • Title
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • DEDICATION
  • CONTENTS
  • 1 Introduction and study
  • 1.1 Non-Gaussian time series modeling-a review
  • 1.2 Summary of the present study
  • 1.3 Preliminary concepts
  • 1.3.1 Infinite divisibility
  • 1.3.2 Self decomposability
  • 1.3.3 Stable distributions on R
  • 1.3.4 Geometric Infinite divisibility
  • Theorem 1.3.1
  • Theorem 1.3.2
  • Theorem 1.3.3 (Aalogue of Levy-Khintchine representation)
  • Theorem 1.3.4 (Analogue of Levy-Khinchin representation)
  • Theorem I.3.5 (Analogue of Kolmogorovs representation)
  • 1.3.5 Bernstien function
  • Theorem 1.3.6
  • 1.3.6 Geometric stable distributions
  • Definition
  • Parameterizations of geometric stable laws
  • Spcial cases
  • 1 Strictly GS laws
  • 2 Linnik distribution
  • 3 Symmetric Linnik distribution
  • 1.3.7 Geometrically strictly stable distributions
  • 1.3.8 Mittag-Leffler distribution
  • 1.3.9 α- Laplace distribution
  • 1.3.10 Geometric exponential distribution
  • 1.3.11 Generalized laplacian distribution
  • 1.3.12 Stationary rime series
  • 1.3.13 Time reversibility
  • 1.3.14 Autoregressive models
  • 2 Geometrical exponential distribution and applications
  • 2.1 Introduction
  • 2.2 Geometric exponential distribution
  • Definition 2.2.1
  • Remark 2.2.1
  • Remark 2.2.2
  • Theorem 2.2.1
  • 2.3 Geometric gamma distribution
  • Theorem 2.3.1
  • Remark 2.3.1
  • 2.4 Application of GED (λ) and GGD (λ, k) distributions in first order autoregressive time series modeling
  • 2.4.1 The distribution of sums of stationary intervals
  • 2.5 Generalization to a kth order autoregressive process
  • 2.6 Geometric exponential distribution and subordinated process
  • Definition 2.6.1
  • Theorem 2.6.1
  • 2.7 Graphs of density function and cumulative distribution function
  • 3 Geometric Mittag-Leffler distribution and processes
  • 3.1 Introduction
  • 3.2 Geometric Mittag-Leffler distributions
  • Definition 3.2.1
  • Definition 3.2.2
  • Theorem 3.2.1
  • 3.3 Geornetrir semi Mittag-Leffler distributions
  • Definition 3.3.1
  • 3.4 Autoregressive models in geometric Mittag-Leffler marginals
  • Definition 3.4.1
  • Theorem 3.4.1
  • 3.5 Joint distributions for (Xn, Xn-1)
  • 3.6 Sum of stationary intervals
  • Remark 3.6.1
  • 3.7 Characterization of geometric Mittag-Leffler distribution
  • Theorem 3.7.1
  • 3.8 Generalisation to a kth order autoregressive process
  • 3.9 Applications
  • 4 Geometric α-laplace distribution and applications
  • 4.1 Introduction
  • 4.2 Semi α-Laplace distribution
  • 4.3 Geometric semi α-Laplace distribution
  • Definition 4.3.1
  • Definition 4.3.2
  • Theorem 1.3.1
  • 4.4 AR (1) model with geometric semi α-Laplace marginals
  • Theorem 3.4.1
  • 4.4.1 The Joint distribution of (Xn, xn-1)
  • 4.5 Geometric α-Laplace distribution
  • Definition 4.5.1
  • Definition 4.5.2
  • Theorem 4.5.1
  • Theorem 4.5.2
  • 4.5.1 The Joint distribution of Xn and Xn-1
  • 4.6 Geometric Laplace distribution
  • Definition 4.6.1
  • Definition 4.6.2
  • Theorem 4.6.1
  • Theorem 4.6.2
  • 4.6.1 The joint distribution for (Xn, Xn-1)
  • 4.7 Generalization to a kth order autoregressive process
  • 4.8 Applications
  • 5 Autoregressive processes with tailed marginals
  • 5.1 Introduction
  • 5.2 Exponential tailed distributions
  • Result 5.2.1
  • 5.3 Geometric exponential tailed distribution
  • 5.4 Geometric gamma tailed distribution
  • 5.5 Geometric Mittag - Leffler tailed distribution
  • 5.6 Geometric semi Mittag-Leffler tailed distribution
  • 5.7 Geometric semi α-Laplace tailed distribution
  • Definition 5.7.1
  • Definition 5.7.2
  • Definition 5.7.3
  • 5.8 Autoregressive models with tailed marginal distributions
  • 5.8.1 Geometric exponential tailed autoregressive processes
  • 5.8.2 Geometric gamma tailed autoregressive process
  • Theorem 5.8.1
  • 5.8.3. Geometric Mittag-Leffler tailed process
  • Theorem 5.8.2
  • 5.8.4. Geometric semi α-Laplace tailed first order autoregressive process
  • Theorem 5.8.3
  • References