• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 220
 
Full Screen

  • Title
  • CERTIFICATE-1
  • CERTIFICATE-2
  • DECLARATION
  • DEDICATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • Preface
  • Research Papers Presented in National/International symposium
  • 1. THEORY OF CONDUCTIVITY AND PHASE TRANSITION
  • 1.1 Introduction
  • 1.2 Anisotropic Conduction
  • 1.3 Dielectrics
  • 1.4 Measurement of Dielectric Tensor
  • 1.5 Theoretical Background
  • 1.5.1 Electric Polarisation
  • 1.6 Conductivity Measurement Theory
  • 1.6.1 Theory of DC Conductivity
  • 1.6.2 DC Conductivity Measurement Methods
  • 1.6.3 General Methods of Measurements
  • 1.6.4 Ohm Meter and Voltmeter -Ammeter Measurements
  • 1.6.5 Potential Probe Method
  • 1.6.6 Spreading Resistance Method
  • 1.6.7 Four- Point Probe Method
  • 1.6.8 Electrometer Method
  • 1.7 Theory of Dielectrics and AC Conductivity
  • 1.7.1 Dielectric Materials
  • 1.7.2 General Theory
  • 1.7.3 Behaviour of Dielectrics in Time Varying Field
  • 1.7.4 Complex Plane Analysis
  • 1.7.5 Dielectric Relaxation and Loss
  • 1.7.6 Dielectric Relaxation
  • 1.7.7 Static and Optic Dielectric Constant
  • 1.7.8 Temperature Dependence of Relaxation Time
  • 1.7.9 Interpretation of the Dielectric Behaviour
  • 1.7.10 AC Electrical Response of Ionic Conductors
  • 1.7.11 Summary
  • 1.8 Theory of Phase Transition
  • 1.8.1 Introduction
  • 1.8.2 Types of Phase Transition
  • 1.8.3 Landau Theory of Phase Transition
  • 1.8.4 Dielectric Relaxation and Dielectric Spectra in the Ferroelectric Phase Transition
  • References
  • 2. EXPERIMENTAL TECHNIQUES
  • 2.1 Introduction
  • 2.2 Conductivity Measurement Methods
  • 2.2.1 DC Electrical Conductivity Measurements
  • 2.2.2 Alternating Currents Bridge Method
  • 2.3 The Conductivity Cell
  • Fig. 2.6: Details of the conductivity cell
  • 2.4 DC Conductivity Measurements
  • 2.5 AC Conductivity Measurements
  • 2.5.1 Factors Affecting Impedance Spectroscopy Experiment
  • Fig. 2.8: AC conductivity measurement setup
  • Fig. 2.9: DC conductivity and dielectric measurement setup
  • 2.6 Sample Preparation
  • 2.6.1 Crystal Growth from Solution
  • 2.7 Constant Temperature Bath
  • Fig. 2.11: Photograph of the crystal growth setup
  • 2.8 Identification of the Faces using Stereographic Projection
  • 2.9 Crystal Cutting and Polishing
  • References
  • 3. ELECTRICAL CONDUCTIVITY AND PHASE TRANSITION STUDIES OF ZINC SELENATE HEXAHYDRATE SINGLE CRYSTAL
  • 3.1 Literature Review
  • 3.2 Experimental Technique
  • 3.2.1 Sample Preparation
  • Fig. 3.1: Photographs ot the grown ZnSeO4.6H2O Crystal
  • Fig.3.2: Morphology of the ZnSeO4.6H2O
  • 3.2.2 X-ray Powder Diffraction of ZnSeO4. 6H20
  • 3.2.3 Cutting and Polishing
  • Fig.3.4: Sterographic projection of ZnSeO4.6H2O Crystal projected at 001 direction
  • 3.3 Measurements of DC Electrical Conductivity
  • 3.3.1 DC Conductivity Along a- axis
  • 3.3.2 DC Conductivity Along c- axis
  • 3.3.3 Activation Energy Along a- and c-axes
  • 3.3.4 Discussion
  • 3.4 Measurements of AC Electrical Conductivity
  • 3.4.1 Complex Impedance Analysis
  • Along a-axis
  • Along c-axis
  • 3.4.2 Dielectric Analysis
  • Frequency dependant dielectric spectra in the low temperature region
  • Frequency dependant dielectric spectra in the high temperature region
  • Temperature dependant dielectric spectra in the low temperature region
  • Temperature dependant dielectric spectra in the high temperature region
  • 3.4.3 Conductivity Analysis
  • Frequency dependent conductivity spectra in the low temperature region
  • Frequency dependent conductivity spectra in the high temperature region
  • Temperature dependent conductivity spectra in the low temperature region
  • Temperature dependent conductivity spectra in the high temperature region
  • 3.4.4 Discussion
  • 3.5 Conclusion
  • References
  • 4. ELECTRICAL CONDUCTIVITY, DIELECTRIC AND PHASE TRANSITION STUDIES OF ZINC SELENATE MONOHYDRATE SINGLE CRYSTALS
  • 4.1 Literature Review
  • 4.2 Experimental Technique
  • 4.2.1 Sample Preparation
  • Fig.4.2: Morphology of ZnSeO4.H2O Crystal
  • 4.2.2 X-ray Powder diffraction of ZnSeO4. H2O
  • Fig. 4.4: Stereographic projection of ZnSeO4.H2O crystal projected at 010 direction
  • 4.3 Measurements of DC Electrical Conductivity
  • 4.3.1 DC Conductivity Along a- axis
  • 4.3.2 DC Conductivity Along b- axis
  • 4.3.3 DC Conductivity Along c- axis
  • 4.3.4 Activation Energy Along a-, b- and c-axes
  • 4.3.5 Discussion
  • 4.4 Measurements of AC Electrical Conductivity
  • 4.4.1 Complex Impedance Analysis
  • Along a-axis
  • Along b-axis
  • Along c-axis
  • 4.4.2 Dielectric Analysis
  • Frequency dependant dielectric spectra in the low temperature region
  • Frequency dependant dielectric spectra in the high temperature region
  • Temperature dependant dielectric spectra in the low temperature region
  • Temperature dependant dielectric spectra in the high temperature region
  • 4.4.3 Conductivity Analysis
  • Frequency dependent conductivity spectra in the low temperature region
  • Frequency dependent conductivity spectra in the high temperature region
  • Temperature dependent conductivity spectra in the low temperature region
  • Temperature dependent conductivity spectra in the high temperature region
  • 4.4.4 Discussion
  • 4.5 Conclusion
  • References
  • 5. ELECTRICAL CONDUCTIVITY, DIELECTRIC AND PHASE TRANSITION STUDIES OF MAGNESIUM SELENATE HEXAHYDRATE SINGLE CRYSTAL
  • 5.1 Literature Review
  • 5.2 Experimental Techniques
  • 5.2.1 Sample Preparation
  • Fig. 5.2: Morphology of the MgSeO4.6H2O single crystal
  • 5.2.2 X-ray Powder diffraction of MgSeO4. 6H20
  • Fig.5.5: Stereographic projection of MgSeO4.6H20 crystal projected at 001 direction
  • 5.2.3 Cutting and Polishing
  • 5.3 Measurements of DC Electrical Conductivity
  • 5.3.1 DC Conductivity Along a- axis
  • 5.3.2 DC Conductivity Along b- axis
  • 5.3.3 DC Conductivity Along c- axis
  • 5.3.4 Activation Energy Along a-, b- and c-axes
  • 5.3.5 Discussion
  • 5.4 Measurements of AC Electrical Conductivity
  • 5.4.1 Complex Impedance Analysis
  • Along a-, b- and c-axes
  • 5.4.2 Dielectric Analysis
  • Frequency dependant dielectric spectra in the low temperature region
  • Frequency dependant dielectric spectra in the high temperature region
  • Temperature dependant dielectric spectra in the low temperature region
  • Temperature dependant dielectric spectra in the high temperature region
  • 5.4.3 Conductivity Analysis
  • Frequency dependent conductivity spectra
  • Temperature dependent conductivity spectra in the low temperature region
  • Temperature dependent conductivity spectra in the high temperature region.
  • 5.4.4 Discussion
  • 5.5 Conclusion
  • References
  • 6. SUMMARY AND CONCLUSION