• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 296
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE-1
  • CERTIFICATE-2
  • CERTIFICATE 3
  • DECLARATION
  • ACKNOWLEDGEMENT
  • List of Abbreviations
  • CONTENTS
  • 1. Introduction
  • 1.1. Methods of vulcanization
  • 1.1.1. Peroxide vulcanization
  • Table1.1. Advantages and disadvantages of peroxide crosslinking [ 5 ]
  • 1.1.2. Resin cross linking
  • Table 1.2. Recipe for vulcanization by resins
  • 1.1.3. Silane cross linking
  • 1.1.4. Metal oxide cross linking
  • Table 1.3. Metal oxide systems for chloroprene rubber
  • 1.1.5. Radiation induced cross linking
  • 1.1.6. High temperature cross linking
  • 1.1.7. Dynamic vulcanization
  • 1.1.8. Sulphur vulcanization
  • 1.2. Unaccelerated sulphur vulcanzation
  • 1.3. Accelerators
  • Table1.4. Principal classes of accelerators used in the sulphur vulcanisation of elastomers
  • 1.4. Accelerated sulphur vulcanization
  • Fig.1.2 Typical cure curve with different accelerator systems
  • Fig.1.3. Typical rheograph showing different stages on curing
  • Fig.1.4. Rheograph showing different behavior in modulus development
  • Table 1.5. Composition of conventional, semi EV and EV cure systems [88]
  • Fig.1.5. Features of NR vulcanizate produced by an efficient crosslinking system
  • 1.5. Role of activators
  • Table 1.7. Intluence of degree of crosshkmg on Physical Properties
  • 1.6. Sulphur donor systenis
  • Fig.1.7. Complex formed in the presence of sulphur donors
  • 1.7. Influence of fillers
  • 1.8. Binary accelerator systems
  • Fig.1.8. Effect of binary accelerators in mechanical properties of vulcanizate
  • 1.9. Concepts of double networks
  • 1.10. Methods to characterize networks
  • 1.11. Scope and objectives of the work
  • 1.12. References
  • 2. Materials and Experimental Methods
  • 2.1 Materials
  • Table 2.1. Characteristics of ISNR-5
  • Table 2.2. Properties of Synaprene (SBR- i 502)
  • 2.2 Synthesis of 1-phenyl-2, 4-dithiobiuret (DTB)
  • 2.3 Characterization of DTB
  • 2.3.1. IR Spectrum
  • 2.3.2. H-NMR Spectrum
  • 2.3.3. Mass Spectrum
  • 2.4. Compounding o rubber
  • 2.5. Cure characteristics
  • Fig. 2.4. A typical rheograph obtained from Monsanto Rheometer (R-100)
  • 2.6. Vulcanization
  • 2.7. Preparation of double networks
  • 2.8. Mechanical properties
  • 2.8.1. Tensile strength, modulus and elongation at break
  • 2.8.2. Tear resistance
  • 2.8.3. Compression set
  • 2.8.4. Rebound resilience
  • 2.8.5. Hardness
  • 2.8.6. Ageing
  • 2.9. Network characterization
  • 2.9.1. Determination of total cross link density
  • 2.9.2. Determination of mono, di and polysulphidic linkages.
  • 2.10. Dynamic mechanical thermal analysis (DMTA)
  • 2.11. Scanning electron microscopy
  • 2.12. References
  • 3. Influence of DCBS / DTB Binary Accelerator System in Vulcanization of Natural Rubber
  • 3.1. Introduction
  • 3.2. Results and discussion
  • 3.2.1. Processing characteristics
  • Table 3.1. Cure Charactenstics of Mixes Cured at 150°C (EV)
  • 3.2.2. Kinetic studies
  • Fig.33. Kinetic plots of curing of NR using DCBS/DTB (EV)
  • Fig.3.4. Kinetic plots of curing of NR using DCBS/DTB (CV)
  • Fig.3.5. Arrhenius plots for curing of NR using DTBS/DTB system (EV)
  • Table 3.3. Cure Kinetics & Energy of Activation of Mixes (EV)
  • 3.2.3. Mechanical properties
  • Table 3.5. Mechanical Properties of NR Cured Using DCBS/DTB (EV)
  • Fig.3.7. Stress-strain curves for DCBS/DTB cured NR vulcanizates (EV)
  • 3.2.4. Cross link density measurements
  • Table 3.7. Network Characterisation of NR Vulcanizates Cured UsingDCBS/DTB (EV)
  • Table 3.8 Network Characterisation of NR Vulcanizates Cured UsingDCBS/DTB
  • 3.2.5. Thermal ageing
  • 3.2.6. Viscoelastic properties
  • 3.2.7. Effect of fillers
  • 3.2.8. SEM studies
  • Fig.3.15. SEM picture showing carbon black dispersion in DCBS/DTB cured NR vulcanizates (a) 40phr (b) 50phr (c) 60phr (d) 70phr.
  • 3.3. References
  • 4. Effect of TBBS / DTB Binary Accelerator System on Natural Rubber Vulcanization
  • 4.1. Introduction
  • 4.2. Results and discussion
  • 4.2.1. Cure characteristics
  • Fig.4.2.Rheograph of the TBBS/DTB mixes (CV)
  • Table 4.2. Cure Characteristis of the Mixes Cured Using TBBS/DTB (CV)
  • 4.2.2. Cure kinetics
  • 4.2.3. Mechanical properties
  • 4.2.4. Chemical characterization
  • 4.2.5. Ageing behavior
  • 4.2.6. Viscoelastic properties
  • 4.2.7. Effect of Fillers
  • 4.3. References
  • 5. Influence of DTB / MBS Binary Accelerator System of Natural Rubber Vulcanization
  • 5.1. Introduction
  • 5.2. Results and discussion
  • 5.2.1. Cure Characteristics
  • Table 5.2. Cure Characteristics of the MBS/DTB Cured Natural Rubber (CV)
  • 5.2.2. Kinetic studies
  • Table 5.3. Cure Kinetics and Activation Energy of the Mixes (EV)
  • Fig.5.3. Kinetic plots of NR stocks cured using MBS/DTB [EV]
  • 5. 2. 3. Mechanical properties
  • Fig.5.5. Stress-strain curves of MBBS/DTB cured NR vulcanizates (EV)
  • 5.2.4. Ageing studies
  • 5.2.5. Network characteristics
  • Table 5.7. Network Chxacteristics MBSDTB Cured NR Vulcanizates (EV)
  • 5.2.6. Viscoelastic measurements
  • Fig.510. Variation of loss modulus with temperature for MBS/DTB cured vulcanizates.
  • 5. 2.7. Influence of fillers
  • 5.3. Comparative evaluation of the effect of DTB / Sulphenamide binary accelerator systems
  • 5.4. References
  • 6. Influence of DTB as a Binary Accelerator in Styrene- Butadiene Rubber
  • 6.1. Introduction
  • 6.2. Results and discussion
  • 6.2.1 Cure characteristics
  • 6.2.2 Kinetic studies
  • Table 6.1. Composition of SBR Mixes.
  • Table 6.2. Cure Characteristics of Gum SBR Vulcanizates Cured using DTB as a Binary Accelerator
  • Table 6.3. Kinetic Studies of DTB Cured SBR Vulcanizates
  • 6.2.3 Mechanical properties
  • 6.2.4 Ageing studies.
  • 6.2.5 Cross link density measurements
  • 6.2.6. Dynamic Mechanical Properties
  • 6.2.7 Effect of fillers
  • 6.3. References
  • 7. Studies on New Binary Accelerator Systems on Technical Properties of NR / SBR blends
  • 7.l. Introduction
  • 7.2. Results and discussion
  • 7.2.l. Cure characteristics
  • Fig.7.1. Rheograph of NR/SBR stocks cured with DCBS/DTB [EV]
  • 7.2.2. Kinetic studies
  • Table 7.3. Kinetic Studies of DTB cured NR/SBR Blends (EV)
  • Table 7.4. Kinetic Studies of DTB cured NR/SBR Blends (CV)
  • 7.2.3. Mechanical properties
  • Table 7.5. Mechanical Properties of DTB Cured NR/SBR Vulcanizates (EV)
  • 7.2.4. Network characterization
  • 7.2.5 /iscoelastic properties
  • 7.3. References
  • 8. Studies on Double Networks Prepared Using Different Binary Accelerator Systems -.
  • 8.1. Introduction
  • 8.2. Experimental
  • 8.2.1. Double network formation
  • 8.2.2. Mechanical properties
  • 8.2.3. Swelling studies
  • 8.3. Results hind discussion
  • 8.3.1. Swelling studies
  • 8.3.2. Cross link density
  • 8.3.3 Ageing studies
  • Fig. 8.8. Effect of thermal ageing on double networked samples cured with MBS
  • 8.3.4. Dynamic mechanical properties
  • 8.4. References
  • 9. Conclusion and Future Outlook
  • Future Outlook
  • APPENDICES