• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 171
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE-1
  • CERTIFICATE-2
  • ACKNOWLEDGEMENT
  • List of Abbreviations
  • CONTENTS
  • 1. FORWARD TO THE PRESENT WORK
  • 1.1 Introduction
  • 1.2 Lactoperoxidase
  • 2. RETROSPECT
  • 2.1 Review of Lactoperoxidase Functions
  • 2.2 Review of Lactoperoxidase Structural Studies
  • Fig.2.1. Proposed structure of lactoperoxidase heme (Rae and Goff, 1996)
  • 3. ISOLATION, PURIFICATION AND CHARACTERIZATION OF OVIS LACTOPEROXIDASE
  • 3.1 Introduction
  • 3.2 Source of the Experiment Material
  • 3.3 Experimental Procedures
  • 3.3.1 Activation of CM Sephadex C-50
  • 3.3.2 Activation Procedure of Dialysis Bag
  • 3.3.3 Ion Exchange Chromatography,
  • 3.3.4 Enzyme Assay using ABTS
  • 3.3.5 Definition of Enzyme Unit Activity
  • 3.3.6 Dialysis
  • 3.3.7 Concentration by PEG-20000
  • 3.3.8 Sodium Dodecyl Sulphate Poly Acrylamide Gel Electrophoresis
  • 3.3.8.1 Preparation of stock solutions
  • 3.3.8.2 Treatment of protein sample
  • 3.3.8.3 Sample buffer preparation
  • 3.3.8.4 Staining of gel
  • 3.3.8.5 Destaining solution
  • 3.3.9 Purification by Gel Filtration
  • 3.3.9.1 Gel filtration
  • 3.3.9.2 Activation of Sephadex G-100
  • 3.3.9.3 Sephadex G-100 Chromatography
  • 3.3.10 Native PAGE
  • 3. 3.10.1 Preparation of sample buffer for Native PAGE
  • 3.3 10. 2 Specific staining of peroxidase
  • 3.3.11 Determination of Protein Concentration
  • 3.3.11.1 Lawrys estimation of protein concentration
  • 3 3.11. 2 Spectrophotometric method to determine protein concentration
  • 3.3.12 Conformational study of sLP arc and metal through Electronic Spectra.
  • 3.3.12.1 Determination of electronic spectra
  • 3.3.12.2 Experimental procedure
  • 3.4 Results
  • 3.4.1 Purification Data
  • Table 3.1. Summary of purification of sheep lactoperoxidase
  • 3.4.2 Enzyme Assay
  • 3.4.3 Determination of Molecular Weight
  • Fig.3.1 Sodium Dodecyl Sulphate-Poly Acrylamide Gel Electrophoresis (SDS-PAGE) of purified sheep lactoperoxidase
  • Fig.3.2. Graphical representation of molecular weight dermination of sLP M1- Phosphorylase b. M2 -Human albumin and M3 - Ovalbumin
  • 3.4.4 UV-Visible Spectral Studies
  • Fig.3.3. UV-Visible spectrum of sLP
  • 3.5 Discussion
  • 4. STUDIES ON ANTIMICROBIAL PROPERTIES
  • 4.1 Introduction
  • 4.2 Studies on Antibacterial Activity
  • 4.2.1 Bacterial Strains
  • 4.2.2 Maintenance of Bacterial Strains
  • 4.2.2 1 Nutrient agar slants
  • 4.2.3 Preparation of the lnoculum
  • 4.2.4 Disc Diffusion method in medium with sLP alone_
  • 4.2.4.1 Preparation of paper discs impregnated with protein
  • 4.2.4.2 Mueller-Hinton agar
  • 4.2.4.3 Experimental procedure
  • 4.2.5 Disc Diffusion method in medium with sLP, thiocyanate and hydrogen peroxide system (sLP-S)
  • 4.2.5.1 Medium and reagents
  • 4.2.5.2 Experimental procedure
  • 4.2.6 Determination of Minimum Inhibitory Concentration (MIC) of sLP
  • 4.2.6.1 sLP in the medium without thiocyanate and hydrogen peroxide.
  • 4.2.6.2 sLP in the medium with thocyanate and hydrogen peroxide system (sLP-S)
  • 4.3 IR Spectral Studies
  • 4.3.1 Experimental Procedure_
  • 4.4 Studies on Antifungal Properties
  • 4.4.1 Fungal Isolates and their Maintenance
  • 4.4.2 Reagents and Medium
  • 4.4.3 Screening of Fungi for sensitivity towards sLP system (sLP-S)
  • 4.4.4 Experimental Procedure
  • 4.4.5 Determination of Minimum Inhibitory Concentration
  • 4.5 Results
  • 4.5.1 Studies on Antibacterial Activity
  • 4.5.1.1 Disc Diffusion studies with disc containing sLP alone
  • Table 4.1. Zone of bacterial Inhibition of disc diffusion studies with disc containing sLP alone
  • Fig.4.1 Antibacterial property of sheep lactoperoxidase without thiocyanate and hydrogen peroxide by disc diffusion method against bacterial strains (a) Escherichia coli (b) Klebsiella pneumoniae
  • 4.5.1.2 Disc Diffusion studies with disc containing sLP-S,
  • Table 4.2. Zone of bacterial inhibition of disc diffusion studies with disc containing all components of sLP system
  • Fig.4.2 Antibacterial property of shep lactoperoxidase with thiocyante and hydrogen peroxide system by disc diffusion method against bacterial strains, (a) Escherichia Coli (b) Klesbsiella pneumoniae
  • 4.5.2 Minimum Inhibitory Concentration studies in medium with sLP alone and with sLP-S
  • 4.5.3 IR Spectral Studies
  • 4.6 Studies on Antifungal Property
  • Table 4.4. Minimum lnhibitory Concentration of sLP in thiocyanate and hydrogen peroxide system for various fungi
  • 4.7 Discussion
  • 4.7.1 Studies on Antibacterial Activity
  • 4.7.2 Studies on Antifungal Property
  • 5. METALLOPROTEIN BEHAVIOUR
  • 5.1 Atomic Absorption Spectrometry
  • 5.1.1 Experimental Procedure
  • 5.2 Inductively Coupled Plasma-Atomic Emisson Spectrometry
  • 5.2.1 Experimental procedure
  • 5.2.2 ICP-AES Labtam 8410 Plasma Scan
  • 5.3 Electron Paramagnetic Resonance Spectroscopy
  • 5.3.1 Principle
  • 5.3.2 Experimental Procedure
  • 5.4 Infrared Spectrophotometry
  • 5.4.1 Experimental Procedure
  • 5.5 General Calculation method to determine number of metal atoms
  • 5.6 Results
  • 5.6.1 Atomic Absorption Spectroscopic Analysis
  • 5.6.2 Inductively Coupled Plasma-Atomic Emission Spectroscopic Analysis.
  • Table 5 1 ICP- AES analysis data
  • 5.6.3 Electron Paramagnetic Resonance Spectroscopic Analysis
  • 5.6.4 Infrared Spectrum Analysis
  • Fig.5.2. Infrared spectrum of sLP
  • 5.7 Discussion
  • 6. CIRCULAR DICHROISM AND FLUORESCENCE STUDIES
  • 6.1 Protein Stability
  • 6.1.1 Noncovalent Forces
  • 6.1.2 Hydrophobic Forces
  • 6.1.3 Hydrogen Bonds
  • 6.1.4 Electrostatic Bonds
  • 6.1.5 van der Waals-London Dispersion Forces
  • 6.1.6 Disulphide Bonds
  • 6.2 Protein Denaturation
  • 6.3 Circular Dichroism
  • 6.3.1 Presentation of Circular Dichroism data
  • 6.4 Experimental Procedures
  • 6.4.1 pH Stability
  • 6.4.2 Thermal Stability
  • 6.5 Fluorescence Spectroscopy
  • 6.5.1 Three-dimensional Structure
  • 6.5.2 Association of Proteins with Substrates and other Macromolecules
  • 6.6 Quenching of Fluorescence
  • 6.6.1 Theory of Collisional Quenching
  • 6.7 Experimental Procedures
  • 6.7.1 Urea induced Unfolding Studies
  • 6.7.2 Guanidine Hydrochloride (GuHCI) Induced Unfolding Studies
  • 6.7.3 Quenching of Sheep Lactoperoxidase Fluorescence
  • 6.8 Results
  • 6.8.1 Circular Dichroism
  • 6. 8. 1.1 pH Stability
  • Fig.6.1. Native CD spectrum of sLP in 0.05 M Tris HCI buffer, pH 8
  • Fig.6.3. CD spectra of sLP in 0.05 M Tris HCI buffer (f) pH 7, (g) pH 6, (h) pH 5, (i) pH 4, and (j) pH 3
  • Fig.6.2. CD spectra of sLP in 0.05 M Tris HCI buffer (a) pH 12, (b) pH 11, (c) pH 10, (d) pH 9 (e) pH 8, and (f) pH 7
  • 6.8.1.2 Thermal Stability
  • Fig.6.4. Thermal denaturation of sLP
  • 6.8.2 Fluorescence Studies
  • 6.8.2.1 Urea Induced Unfolding
  • Fig.6.5. Fluorescence spectra of sLP at varying concentrations of urea
  • Fig.6.6. Variation of percentage fluorescence of sLP with urea concentrations.Fluorescence intensity in the absence of urea is taken as 100%. Protein concentration was 2 μM in 0.05 M Tris HCI buffer, pH 8
  • Fig.6.7. Variation of emission of maxima of hptophan fluorescence of sLP with urea denaturant concentrations
  • 6.8.2.2 GuHCl Induced Unfolding
  • Fig. 6.8. Fluorescence spectra of sLP at varying concentrations of GuHCl
  • Fig.6.9 Variation of percentage fluorescence of sLP with GuHCl concentrations.Fluorescence intensity in the absence of denaturant is taken as 100%. Protein concentration was 2 μM in 0.05 M Tris HCl buffer, pH 8
  • Fig.6.10. Variation of emission of maxima of tryptochan fluorescence of sLP with GuHCl denaturant concentrations
  • 6.8.2.3 Acrylamide Quenching
  • Fig.6.11. Quenching of tryptophan fluorescance of sLP using acrylamide concentrations.
  • Fig.6.12. Stern-Volmer plot for acrylamide quenching of sLP fluorescence.
  • 6.8.2.4 Potassium iodide Quenching
  • Fig.6.13. Quenching of tryptophan fluorescence of sLP at pH 8 using potassium Iodide.
  • Fig.6.14. Stern-Volmer plot of the quenching rate of tryptophan fluorescence for sLP at various potassium iodide concentrations.
  • Fig.6.15. Quenching of tryptophan fluorescence spectra of sLP at pH 5 using potassium iodide.
  • Fig.6.16 Stern-Volmer plot of the quenching rate of tryptophan fluorescenca for sLP at various potassium iodide concentrations.
  • Fig.6.17 Quenching of tryptophan fluorescence spectra of sLP at 1M GuHCl using various potassium iodide concentrations.
  • Fig.6.18 Stern-Volmer plot of the quenching rate of tryptophan fluorescence for sLP at various potassium iodide concentration in the presence of 1 M GuHCl
  • 6.9 Discussion
  • 6.9.1 Circular Dichroism
  • 6.9.2 Fluorescence Studies
  • 7. SUMMARY AND CONCLUSION
  • BIBLIOGRAPHY