• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 311
 
Full Screen

  • TITLE
  • DEDICATION
  • ACKNOWLEDGEMENT
  • DECLARATION 1
  • DECLARATION 2
  • CONTENTS
  • List of Abbreviations
  • I. Introduction And Objectives
  • II. Polymer-Metal Complexes: Synthetic, Structural And Analytical Aspects
  • II.A. Formation Of Polymer-Metal Complexes
  • II.A.1. Complexation of Polymeric Ligand with Metal Ion
  • a. Pendant Complexes
  • (i) Monodentate Pendant Complexes
  • (ii) Polydentate Pendant Complexes
  • b. Inter- and/or Intra-Molecularly Bridged Complexes
  • II.A.2. Polymerization of Coordinated Monomers
  • a. Polymerization of Vinyl Compounds Containing MetalComplexes
  • b. Polycondensation of Metal Complexes containing FreeFunctional Groups
  • c. Ring-Opening Polymerization
  • II.A.3. Reaction of Peripheral Functional Groups inMetal Complexes with Polymers
  • II.A.4. Coordination Polymers
  • a. Linear Coordinated Polymers
  • (i) Bifunctional Ligands
  • (ii) Simple Compound or Ion as Ligands
  • b. Network-coordinated Polymers
  • II.B. Analysis and Characterization Of Polymer-Metal Complexes
  • II.B.1. Spectral Characterization of Polymer-~etalComplexes
  • a. Formation of Polymer-Metal Complexes
  • b. Coordination Structure of Polymer-Hetal Complexes
  • c. X-ray Analysis of Polymer-Metal Complexes
  • d. Microenvironment Around Metal Ions
  • II.B.2. Stability Constants of Polymer-Metal Complexes
  • II.C. Specific Applications Of Polymer-Metal Complexes.
  • II.C.1. Catalytic Activities of the Polymer-MetalComplexes
  • II.C.2. ~echanochemical Systems
  • II.C.3. Biologically Important Polymer-Metal Complexes
  • a. Complex Formation of Metal Ions with Biopolymers
  • (i) Metal complexes of Polypeptides
  • (ii) Metal Complexes of Nucleic Acids and RelatedCompounds
  • (iii) Mixed Ligand Complexes
  • II.C.4. Polymeric Ligands in Metal Ion Separations
  • II.D. Macromolecular Effects On Complexation
  • II.D.1. Matrix structure
  • II.D.2. Matrix Nature
  • II.D.3. Matrix Configuration
  • II.D.4. Effect of Spacer Grouping
  • II.D.5. Effect of the Extent of Crosslinking
  • II.D.6.Steric Effects
  • II.D.7. Intramolecular Chelation
  • II.D.8. Electrostatic Effect
  • III. Complexation Of Polyacrylamide-Supported Amines: Effects Of The Variables Of The Nature And Extent Of Crosslinking On Complexation
  • Results And Discussion
  • III.A. Preparation Of Crosslinked Polyacrylamides
  • III.A.1. Divinylbenzene-Crosslinked Polyacrylamide
  • III.A.2. N, N-Methylene-Bis-Acrylamide Crosslinked Polyacrylamide
  • III.A.3. Tetraethyleneglycol Diacrylate Crosslinked Polyacrylamide
  • III.B.Transamidation Of Crosslinked Poly-Acrylamides: Preparation Of Poly (N-2 aminoethylacrylamide) S
  • III.C.Complexation Of Amino. Functions Supported On Crosslinked Polyacrylamides
  • III.C.1 Effect Of The Nature And Extent Of Crosslinking
  • III.C.2.Time-Course Of Complexation
  • III.C.3. Recyclability Of Complexed Resin
  • III.C.4. Specificity Of Complexed Resin
  • III.C.5. Swelling Characteristics
  • III.C.6. Kinetics Of Complexation
  • a.Diffusion, Adsorption and Interaction of Metal Ions withCrosslinked Polyacrylamide-Supported Amines
  • i. Langmuir Type
  • ii. Frumkin Type
  • III.C.7. Infrared Spectra
  • III.C.8. ESR Spectra
  • III.C.9. Scanning Electron Microscopy
  • Fig. 111.21. SEPls of (a) DVB-Crosslinked Aminopolyacrylamideand (b) Cu (I1) Complex
  • Fig. 111.22. SEWS of (a) NNMBA-Crosslinked Aminopolyacrylamideand (b) Cu (I1) Complex
  • Fig. 111.23. SEMs of (a) TTEGDA-Crosslinked Aminopolyacrylamideand (b) cu (I1) Complex
  • Fig. 111.24- SEMs of Swollen (a) TTEGDA-CrosslinkedAminopolyacrylamide and (b) Cu (I1) Complex
  • IV. Complexation Of Polymer-Supported Dithiocarbamates
  • Results And Discussion
  • A. Complexation Of Polyacrylamide-Supported Dithiocarbamates
  • 1. Preparation Of Polyacrylamide supported Dithiocarbamates
  • 2. Complexation Of Polyacrylamide supported Dithiocarbamates
  • a. Effect Of The Molecular Character And Extent Of Crosslinking
  • b. Time-Course Of Complexation
  • c.Recyclability Of Complexed Resins
  • d. Swelling Characteristics
  • B. Complexation Of Polystyrene-Supported Dithiocarbamates
  • 1. Synthesis Of Polystyrene-Supported Dithiocarbamates
  • 2. Complexation Of Polystyrene supported Dithiocarbamates
  • a. Effect Of The Extent Of Crosslinking
  • C. Characterization Of Dithiocarbamate-Metal Complexes
  • 1. Infrared Spectra
  • 2. Esr Spectra
  • 3. Scanning Electron Microscopy
  • Fig. IV.15. SEMs of (a) TTEGDA-Crosslinked Polyacrylamide-Supported Dithiocarbamate and (b) Cu (11) Complex
  • Fig - IV.16. SEMs of (a) Polystyrene-Supported Dithiocarbamateand (b) Cu (I1) Complex
  • V. Thermogravimetric Investigations Of Polymer-Metal Complexes
  • Evaluation of Kinetic Parameters
  • Results And Discussion
  • A. Thermogravimetric Studies Of The Metal Complexes Of Polyacrylamide Supported Amine
  • 1. Metal Complexes Of DVB-Crosslinked Polyacrylamide-Supported Amines
  • a. Metal Complexes Of 4% DVB crosslinked Aminopolyacrylamide
  • b. Cu (II) Complexes Of Aminopoly acrylamides With Varying Extents Of DVB-Crosslinks
  • 2.Cu (II) Complexes Of Aminopoly-Acrylamides With Varying Extents Of NNMBA-Crosslinks
  • 3. Metal Complexes Of 2% TTEGDA crosslinked Aminopolyacrylamide
  • B. Thermogravimetric Studies Of The Metal Complexes Of Polymer supported Dithiocarbamates
  • 1. Metal Complexes Of Polyacrylamide Supported Dithiocarbamates
  • a. Metal Complexes Of 4% DVB Crosslinked Polyacrylamide Supported Dithiocarbamate
  • b. Metal Complexes Of NNMBA Crosslinked Polyacrylamide Supported Dithiocarbamates
  • c. Metal Complexes Of 2% TTEGDA Crosslinked Polyacrylamide Supported Dithiocarbamate
  • 2. Metal Complexes Of polystyrene supported Dithiocarbamates
  • a. Cu (II) Complexes
  • b. Ni (II) Complexes
  • c. Comparison Of The Thermal Decompositions Of Cu (II) And Ni (II) Complexes
  • VI. Experimental
  • 1. General
  • a. Materials
  • b. Instrumental
  • 2. Preparation of Crosslinked Polyacrylamides.
  • a. polyacrylamides Crosslinked with Divinylbenzene
  • b. Polyacrylamides Crosslinked with N, N-Methylene-bisacrylamide
  • c. Polyacrylamides Crosslinked with Tetraethyleneglycoldiacrylate
  • 3. Transamidation of Polyacrylamides to Poly (N-2-aminoethylacrylamides)
  • 4. Estimation of Amino Groups in ~oly (~-2-aminoethylacrylamide) ~: General Procedure
  • 5. Preparation of Poly (N-2-dithiocarbamatoethylacrylamide) s from Poly (N-2-aminoethylacrylamide) ~: GeneralProcedure
  • 6. Chloromethylation of Divinylbenzene-crosslinkedPolystyrenes
  • a. Preparation of Chloromethyl Methyl Ether
  • b. chloromethylation of Polystyrenes: General Procedure
  • c. Estimation of Chlorine in the ChloromethylPolystyrenes
  • 7. preparation of Polystyrene-Supported Amines
  • a. Aminomethyl Polystyrene (2)
  • b. (N-Ethy1) aminomethyl Polystyrene (3)
  • c. Ethylenediaminomethyl Polystyrene (4)
  • d. Hexamethylenediaminomethyl Polystyrene (5)
  • e. Reaction of Chloromethyl Polystyrene with LimitedAmount of Diamines (5) and (6)
  • 8. Sodium Dithiocarbamates of Amino Polystyrenes (2a-6a): General Procedure
  • 9. Preparation of Polymer-Metal Complexes: GeneralProcedure
  • 10. Estimation of Metal Ions
  • 11. Swelling Measurements
  • 12. Recycling of Complexed Resins.
  • 13. Kinetics of Cu (1I) Complexation of Polyacrylamide-Supported Amines: General Procedure
  • 14. Adsorption Studies
  • VII. Summary And Outlook
  • VIII. References