• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 288
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE-1
  • CERTIFICATE-2
  • DECLARATION
  • ACKNOWLEDGEMENT
  • GLOSSARY OF TERMS
  • CONTENTS
  • 1. General Introduction
  • 1.1 Introduction
  • 1.2 Classification of composites
  • 1.2.1 Particulate composites
  • 1.2.2 Fibre reinforced composites
  • 1.2.3 Laminated composites
  • 1.2.4 Hybrid composites
  • Fig.1.1. Different hybrid configurations: (a) sandwich type, (b) interply, (c) intraply and (d) intimately mixed.
  • 1.3 Fibres-matrices-interface
  • 1.3.1 Types of fibres used for reinforcement
  • Fig.1.2. Classification of fibres
  • (a) Natural fibres
  • Table 1.1. Extraction methods, amount and length of various plant fibres
  • Table 1.2. Mechanical properties of some plant fibres
  • (b) Man-made fibres
  • Table 1.3. Properties of kevlar and other competitive materials.
  • 1.3.2 Matrices
  • Table 1.4. Representative properties of some polymeric matrix materials.
  • 1.3.3 Interface
  • Fig. 1.3. Relation between the properties of composites and various laws of mixture.
  • 1.4 Processing techniques
  • Fig.1.4. Different moulding techniques
  • 1.5 Factors influencing composite properties
  • 1.5.1 Fibre volume fraction
  • 1.5.2 Strength, modulus and chemical stability of fibre and matrix
  • 1.5.3 Influence of fibre orientation
  • 1.5.4 Influence of fibre length
  • 1.5.5 Coupling agents
  • 1.6 Theories of adhesion
  • 1.6.1 Mechanical theory
  • 1.6.2 Adsorption theory
  • 1.6.3 Diffusion theory
  • 1.6.4 Electrostatic theory
  • 1.7 Interface modification
  • 1.7.1 Surface modification of polymers.
  • (a) Chemical treatment
  • (b) Corona discharge treatment.
  • (c) UV irradiation.
  • (d) Plasma treatment
  • 1.7.2 Surface modification of fillers
  • (a) Physical methods of modification.
  • (b) Chemical methods of modification
  • 1.8 Characterisation of interface
  • 1.9 Natural fibre reinforced polymer composites and their applications
  • 1.10 Scope and objectives of the work
  • 1.11 References
  • 2. Materials and Experimental Techniques
  • 2.1 Materials
  • 2.1.1 Pineapple leaf fibre.
  • Table 2.1. Physical and mechanical properties of PALF
  • Table 2.2. Chemical constituents of PALF.
  • 2.1.2 Polyethylene
  • Table 2.3. Physical and mechanical properties of LDPE
  • 2.1.3 Chemicals
  • 2.2 Fibre treatment
  • 2.2.1 Alkali treatment
  • 2.2.2 Silane treatment
  • 2.2.3 Isocyanate treatment
  • 2.2.4 Permanganate treatment.
  • 2.2.5 Peroxide treatment
  • 2.3 Characterisation
  • 2.3.1 IR spectroscopy
  • 2.3.2 Scanning electron microscopy
  • 2.3.3 Optical microscopy
  • 2.4 Preparation of composites
  • 2.5 Characterisation of composite properties
  • 2.5.1 Mechanical properties
  • 2.5.2 Rheological measurements
  • 2.5.3 Thermogravimetric analysis
  • 2.5.4 Dynamic mechanical analysis
  • 2.5.5 Stress relaxation
  • 2.5.6 Electrical properties
  • 2.5.7 Environmental effects
  • 2.6 References
  • 3. Mechanical Properties of PALF/LDPE Composites
  • 3.1 Introduction
  • 3.2 Results and discussion
  • 3.2.1 Melt mixed composites
  • (a) Mixing characteristics.
  • Fig. 3.1 Plastographs for PALF/LDPE composites at different fibre loading. (Rotor speed 60 rpm, mixing time 6 rnin, temperature 120°C)
  • (b) Mechanical properties
  • Fig.3.2. Variation of tensile strength and modulus with mixing time of meltmixed composites. Fibre content 30%.
  • Fig. 3.3 Tensile strength versus rotor speed of melt mixed composites (Fibrecontent 30%)
  • Fig.3.4 Fibre distribution curve showing fibre breakage at different rotor speed.
  • 3.2.2 Melt mixed/solution mixed composites
  • Table 3.2. Variation of tensile properties of randomly oriented melt mixed and solution mixed composites (Fibre length 6 mm)
  • Fig.3.5. Tensile fracture surfaces of melt mixed composites showing fibre damage: (a) and (c) splitting, (b) peeling.
  • Fig.3.6. Optical photographs of fibres extracted From (a) solution mixedcomposite (b) melt mixed composite showing extent of fibre breakage.
  • Fig.3.7 Fibre distribution curve showing fibre breakage in solution mixed composite and melt mixed composite.
  • 3.2.3 Solution mixed composites
  • (a) Effect of fibre length
  • Table 3.3. Variation of mechanical properties of longitudinally oriented solution mixed PALF/LDPE composites with fibre length (Fibre content 30 wt %)
  • (b) Effect of fibre loading
  • Fig.3.8. Stress-strain curve of PALFLDPE composites at different fibre loading.
  • Table 3.4. Mechanical properties of longitudinally oriented solution mixed PALF/LDPE composites (Fibre length 6 mm)
  • (c) Effect of fibre orientation
  • Fig.3.9 SEM photographs showing (a) transverse and (b) longitudinal fibre orientation. Samples were cut perpendicular to the direction of applied force.
  • Fig. 3.10 Effect of fibre orientation on tensile strength of PALF/LDPE composites.
  • Fig.3.11 Effect of fibre orientation on Youngs modulus of PALF/LDPEcomposites.
  • Fig. 3.12 Effect of fibre orientation on tear strength oFPALF/LDPE composites.
  • Fig.3.13 Effect of orientation on tensile strength of PALF/LDPE composites with varying temperature.
  • (d) Effect of test speed
  • Fig.3.14 The stress-strain behaviour of randomly oriented PALF/LDPE composites at different test speeds (Fibre loading lo%, temperature28°C)
  • Fig.3.15 The stress-strain behaviour of randomly oriented PALF/LDPE composites at different test speeds (Fibre loading 30%, temperature28°C)
  • Table 3.5. Effect of test speed on tensile properties of PALF/LDPE composites (Fibre loading: 30%; temperature 28OC)
  • (e) Effect of temperature
  • Fig.3.16 The stress-strain behaviour of LDPE at different temperatures (Testspeed 50 d m i n)
  • Fig.3.17 The stress-strain behaviour of longitudinally oriented PALF/LDPEcomposites at different temperatures (Fibre loading 20%, test speed 50 mm/min)
  • Fig. 3.18 Variation of tensile strength and elongation at break with temperature of longitudinally oriented PALF/LDPE composites at different fibre loading.
  • Fig. 3.19 Variation of Youngs modulus with temperature of PALF/LDPE composites at different fibre loading.
  • Fig.3.20 Normalised tensile strength (ON) of PALF/LDPE composites at different fibre loading.
  • Fig.3.21 Normalised tensile modulus (EN) of PALF/LDPE composites at diferentfibre loading.
  • Fig. 3.22 Plot of log tensile strength versus 1/T
  • Table 3.6. Activation energy of PALF/LDPE composites.
  • (f) Fracture surface morphology
  • Fig. 3.23 Scanning electron micrographs of LDPE fiacture surfaces at 28°C: (a) 5 mdmin, (b) 500 mm/min (Magnification x 160)
  • Fig. 3.24 Scanning electron micrographs of LDPE Fracture surfaces at a test speed of 50 mm/min: (a) O°C; (b) 80°C (Magnification x 180)
  • Fig. 3.25 Scanning electron micrographs of failure surfaces of PALF/LDPE composites at 20% fibre loading, test speed 50 mdmin: (a) O°C; (b) 28OC; and (c) 80°C.
  • 3.2.4 Recyclability of solution mixed composites
  • Table 3.7. Effect of repeated extrusion on the tensile properties of solutionmixed PALF/LDPE composites.
  • 3.2.5 Comparison of pineapple fibre reinforced polyethylene composites with other natural fibres
  • Table 3.8. Comparison of tensile properties of randomly oriented PALF/LDPE, sisal/LDPE and jute/LDPE composites.
  • 3.3 References
  • 4. Effect of Chemical Treatments on the Mechanical Properties of PALF/LDPE Composites
  • 4.1 Introduction
  • 4.2 Results and discussion
  • 4.2.1 Sodium hydroxide treatment
  • Fig.4.1 Effect of NaOH concentration on tensile properties of PALF/LDPE composites at 20% fibre loading.
  • Table 4.1. Effect of NaOH (5%) treatment on the mechanical properties at different fibre loading.
  • Fig.4.2a IR spectrum of untreated PALF.
  • Fig.4.2b IR spectrum of NaOU treated PALF.
  • Fig.4.3 SEM photograph of surfaces of PALF (a and b) untreated and (c and d) NaOH treated.
  • 4.2.2 Silane treatment
  • Table 4.2. Effect of silane treatment (A 172) on mechanical properties ofPALFLDPE composites at different fibre loading (Silaneconcentration; 4% by weight of fibre)
  • Fig.4.4 Hypothetical structure of silane treated composites at the interfacialarea of PALF and LDPE.
  • Table 43. Effect of different types of silanes on mechanical properties of PALF/LDPE composites (Fibre loading2 0%)
  • Fig.4.5 SEM photograph of silane treated PALF.
  • Fig. 4.6 SEM photographs of tensile fracture surfaces of PALF/LDPE composites: (a) untreated and (b) silane treated.
  • 4.2.3 Isocyanate treatment
  • Fig.4.7 Effect of PMPPIC concentration on tensile strength of PALF/LDPEcomposites at 20% fibre loading.
  • Table 4.4. Effect of PMPPIC (5% by wt of fibre) treatment on mechanicalproperties of PALF/LDPE composites at different fibre loading.
  • Fig. 4.8 IR spectrum of PMPPIC treated PALF
  • Fig. 4.9 Hypothetical structure of PMPPIC treated composites at the interfacial area of PALF and LDPE.
  • Fig.4.10 SEM photograph of PMPPIC treated PALF.
  • Fig.4.11 SEM photographs (a & b) of tensile fiacture surfaces of PMPPIC treated PALF/LDPE composites.
  • 4.2.4 Potassium permanganate treatment
  • Fig. 4.12 Effect of permananganate concentration on tensile properties of PALF/LDPE composites at 20% fibre loading.
  • 4.2.5 Effect of peroxide treatment
  • Fig.4.13 Effect of peroxide concentration on tensile strength of PALF/LDPE composites at 20% fibre loading.
  • Table 4.5 Effect of peroxide treatment on tensile properties of PALF/LDPE composite at different fibre loading (Peroxide concentration 0.5%)
  • Fig. 4.14 SEM photogra.ph of BPO treated PALF/LDPE composite
  • 4.2.6 Efficiency of different treatments
  • Fig.4.15 Effwt of different chemical treatments on tensile strength ofPALFLDPE composites PMPPIC (5% by wt of tibre), silane (496 bywt of fibre), BPO (0 5% of polymer), DCP (0 5% of polymer) KMnOJ (0 01 5%) and NaOH (1%) .
  • Fig.4.16 Effect of different chemical treatments on Youngs modulus ofPALFLDPE composites: PMPPIC (5% by wt of fibre), silane (4% bywt of fibre), BPO (0.5% of polymer), DCP (0.5% of polymer), KMnO, (0.015%) and NaOH (1%)
  • Fig. 4.17 Effect of different chemical treatments on stress-strain behaviour ofPALFLDPE composites.
  • Fig. 4.18 Schematic representation of failure process before and aRer theapplication of force: (a) untreated and (b) treated composites.
  • 4.3 References
  • 5. Melt Rheological Behaviour of PALF/LDPE Composites
  • 5.1 Introduction
  • 5.2 Results and discussion
  • 5.2.1 Effect of shear rate and fibre loading on viscosity
  • Fig.5.1. Variation of melt viscosity (q) with shear rate (y) of PAL.F/LDPEcomposites at different fibre loading (Fibre length 6 mm, temperature125°C)
  • 5.2.2 Effect of shear stress and fibre loading on viscosity
  • Fig. 5.2. Variation of melt viscosity (q) with shear stress (r) of PALFLDPEcomposites at different fibre loading (Fibre length 6 mm temperature12S°C)
  • 5.2.3 Effect of fibre length
  • Fig. 5.3. Variation of melt viscosity (11) with shear rate (y) of PALFLDPEcomposites at different fibre length (Fibre loading 20%. temperature125OC)
  • 5.2.4 Effect of chemical treatments.
  • Fig.5.4. Variation of melt viscosity (q) with shear rate (y) of PALFLDPEcomposites for different fibre treatments (Fibre length 5 mm, temperature 125°C)
  • 5.2.5 Effect of temperature
  • Fig. 5.5. Variation of melt viscosity (q) with temperature at different shear ratesand at different fibre loading (Fibre length 6 mm)
  • Table5.1. Activation energy of PALFILDPE composites at different fibreloading
  • Table 5.2. Viscosity of untreated and treated composites at varlous temperatures (Fibre loading 20%)
  • Table 5.3. Viscosity of peroxide treated composites at vanous temperatures (Fibre loading 20%)
  • Table 5.4. Crosslink density values of composites at two different temperatures (Fibre loading 20%)
  • 5.2.6 Shear stress-temperature superposition master curve.,
  • Fig. 5.7. Shear stress versus shear rate superposition master curves at differentfibre loading at different temperatures.
  • Fig. 5.8. Plot of log a1versus l/T.
  • 5.2.7 Comparison with theoretical prediction
  • Fig.5.9. Comparison of theoretical and experimental viscosity of PALF/LDPE composites at different fibre loading.
  • 5.2.8 Fibre breakage analysis
  • Fig. 5.10. Fibre length distribution curve
  • Fig. 5.1 1. Plot of most probable length versus shear rate (j.)
  • Table 5.5. Fibre length distribution index for PALF
  • 5.2.9 Extrudate morphology
  • Fig.5.12. Scanning electron micrographs of the cross section of extrudate atdifferent shear rares;
  • Fig. 5.13. Scanning electron micrographs of surface morphology of extrudate at different shear rates; (a) 16.4 s- and (b) 1640 s-.
  • 5.2.10 Flow behaviour index
  • Table 5.6. Flow behaviour index (n) of PALF/LDPE composites at differentfibre loading.
  • Table 5.7. Flow behaviour index (n) of treated PALF/LDPE composites (Fibreloading 20%)
  • 5.2.11 Correlation between melt flow index (MFI) and capillary rheometer data
  • Table 5.8. MFI values of PALFILDPE composites (d l 0 mln) at 1445°C
  • Figun 5.14. Viscosity master curves for different PALFILDPE systems at 14S°C
  • 5.3 References
  • 6. Therrmogravimetric and Dynamic Mechanical Properties of PALF/LDPE Composites
  • 6.1 Introduction
  • 6.2 Results and discussion
  • 6.2.1 Thermogravimetric analysis
  • (a) Effect of fibre loading.
  • Fig. 6.1. TGA curves of (a) LDPE, (b) PAL.F and (c) PALFiLDPE compositecontaining 20% fibre
  • Table 6.1. Weight losses at different temperatures.
  • Fig. 6.3. DTG curves of (a) LDPE, (b) PALF and (c) PALFLDPE compositecontaining 20% fibre.
  • (b) Effect of chemical treatment
  • Fig.6.3. TGA curves of PALF/LDPE composites: Effect of fibre treatment: (a) Untreated fibre, (b) PMPPIC treated (Fibre content 20%)
  • Fig.6.4. DTG curves of PALF/LDPE composites: Effect of fibre treatment (a) Untreated fibre, (b) PMPPIC treated (Fibre content 20%)
  • 6.2.2 Dynamic mechanical thermal analysis
  • (a) Effect of fibre loading.
  • Fig.6.5. Temperature dependence of storage modulus (E) and mechanical lossfactor (tan 6) of PALFLDPE composites having different fibre loading (Fibre length 6 mm)
  • Fig.6.6. Effect of fibre loading on E and tan 6 of PALFLDPE composites (Oscillation frequency 35 Hz)
  • Fig. 6.7. Effect of fibre loading on E of PALFLDPE composites at differenttemperatures
  • Fig. 6.8. Temperature dependence of loss modulus (E) of PALFLDPEcomposites having different fibre loading (Fibre length 6 mm)
  • (b) Effect of orientation
  • Fig. 6.9. Temperature dependence of storage modulus (E) of PAI.F/LDPEcomposites having different fibre orientations (Fibre length 6 mm, fibrecontent 30%)
  • (c) Effect of chemical treatments.
  • Fig. 6.10. Effect of different chemical treatments on E of PALF/LDPEcomposites.
  • Fig. 6.11. Effect of chemical treatments on E and E of PALF/LDPE compositesat different fibre loading (Temperature 27OC)
  • Fig. 6.12. Effect of chemical treatments on tan 6 of PALF/LDPE composites atdifferent temperatures (Fibre loading 20%)
  • (d) Effect of frequency
  • Fig. 6.13. Effect of oscillation frequency on E and E of untreated PALF/LDPEcomposites (Fibre loading 20%)
  • Fig. 6.14. Effect of oscillation frequency on E and E of PMPPIC treatedPALF/LDPE composites (Fibre loading 20%)
  • Fig.6.15. E versus log f curves of PALF/LDPE composites for temperaturesfrom 30 to 1 10°C.
  • Fig.6.16. Plot of log versus T
  • 6.3 References
  • 7. Stress Relaxation Behaviour of PALF/LDPE Composites
  • 7.1 Introduction
  • 7.2 Results and discussion
  • 7.2.1 Effect of fibre length.
  • Fig. 7.1. Stress relaxation curve of PALF/LDPE composites with different fibre length (Successive graphs are displaced upward by 0.05 for clarity; Strain level 4%. fibre loading 20%)
  • Table 7.1. Rate of relaxation (%) of PALF/LDPE composites with differentfibre length (Fibre loading 20%, strain level 4%)
  • Fig.7.2. Tensile stress relaxation modulus against time for PALF/LDPEcomposites with different fibre length (Strain level 4%. fibre loading20%)
  • 7.2.2 Effect of fibre loading.
  • Fig.7.3. Stress relaxation curve of PALF/LDPE composites at different fibre loading (Successive graphs are displaced upward by 0.05 for clarity; strain level 4%. fibre length 6 mm)
  • Table 7.2. Rate of relaxation (?h) of PALF/LDPE composites at different fibreloading (Fibre length 6 mm, strain level 4%)
  • Fig. 7.4. Tensile stress relaxation modulus against time for PALF/LDPEcomposites at different fibre loading (Strain level 4%)
  • 7.2.3 Effect of fibre orientation.
  • Fig.7.5. Dependence of stress relaxation behaviour of PALF/LDPE compositeson fibre orientation (Successive graphs are displaced upward by 0.05 for clarity; strain level 4%, fibre loading 20%)
  • Table 7.3. Rate of relaxation (%) of PALF/LDPE composites with different fibre orientation (Fibre loading 20%, strain level 4%)
  • 7.2.4 Effect of chemical treatments
  • Fig.7.6. Stress relaxation curve of PALFILDPE composites at different chemicaltreatments (Successive graphs are displaced upward by 0.05 for clarity; strain level 4%. fibre loading 20%)
  • Table 7.4. Rate of relaxation (%) of PALF/LDPE composites at differentchemical treatment (Fibre loading 20%, strain level 4%)
  • Fig. 7.7. Tensile stress relaxation modulus against time for PALF/LDPE composites at different chemical treatments (Strain level 4%, fibreloading 20%)
  • 7.2.5 Effect of strain level.
  • Fig.7.8. Effect of strain level on stress, relaxation curves of PALFILDPEcomposites at 20% fibre loading (Successive graphs are displacedupward by 0.05 for clarity)
  • Table 7.5. Rate of relaxation (%) of PALF/LDPE composites at different strain level. Fibre loading 20%.
  • Fig. 7.9. Tensile stress relaxation modulus against time for PALF/LDPE composite at various strain levels (Fibre loading 20%)
  • Fig. 7.10. Master relaxation modulus curve versus log time for PALF/LDPE composites (Fibre loading 20%)
  • 7.2.6 Effect of pre-str in.
  • Fig.7.11. Stress relaxation curve of PALF/LDPE composites-Effect of prestrain (Fibre loading 20%)
  • Table 7.6. Rate of relaxation (%) of PALF/LDPE composites--effect ofprestrain (Fibre loading 200/a, strain level 4%)
  • 7.2.7 Effect of thermal treatment
  • Fig.7.12. Stress relaxation curve of PALFILDPE composites-Effect of thermaltreatment (Successive graphs are displaced upward by 0.05 for clarity; strain level 4%, fibre loading 20%)
  • Table 7.7. Rate of relaxation (%) of PALFLDPE composites--effect ofthermal treatment (Fibre loading 20%, strain level 4%)
  • Fig. 7.13. Tensile stress relaxation modulus against time for PALF/L.DPE composites-Effect of thermal treatment (Strain level 4%)
  • 7.3 References
  • 8. Electrical Properties of PALF / LDPE Composites
  • 8.1 Introduction
  • 8.2 Results and discussion
  • 8.2.1 Dielectric constant
  • (a) Effect of fibre length
  • Fig. 8.1. Effect of fibre length on the dielectric constant of PALF/LDPEcomposites (Fibre loading 5%)
  • (b) Effect of fibre loading
  • Fig. 8.2. Effect of fibre loading on the dielectric constant of PALF/LDPEcomposites (Fibre length 6 mm)
  • (c) Effect o f chemical treatments
  • Fig. 8.3. Effect of chemical treatments on the dielectric constant of PALF/LDPE composites (Fibre loading 20%; fibre length 6 mm)
  • 8.2.2 Volume resistivity
  • Fig.8.4. Effect of fibre loading on the volume resistivity of PALF/LDPEcomposites (Fibre length 6 mm)
  • 8.2.3 Conductivity and percolation
  • Fig. 8.5. Effect of fibre loading on conductivity of PALF/LDPE composites (Fibre length 6 mm)
  • Fig. 8.6. Schematic representation of percolation process in PALF/LDPEcomposites.
  • Fig.8.7 Effect of chemical treatments on the volume resistivity of PALF/LDPEcomposites (Fibre loading 20%; fibre length 6 mm)
  • 8.2.4 Dissipation factor.
  • Fig. 8.8. Effect of fibre loading on tan 6 of PALF/LDPE composites (Fibrelength 6 mm)
  • Fig. 8.9. Effect of chemical treatments on tan 6 of PALF/LDPE composites (Fibre loading 20%; fibre length 6 mm)
  • 8.3 References
  • 9. Environmental Effects on the Properties of PALF/LDPE Composites
  • 9.1 Introduction
  • 9.2 Results and discussion
  • 9.2.1 Effect of fibre loading
  • Fig.9.1. Sorption curve showing the mol per cent uptake of water by PALF/LDPE composites with time at different fibre loadings (Temperature 28OC)
  • Fig.9.2. Plot of Q, versus fibre loading for PALF/LDPE composites (Temperature 28°C)
  • 9.2.2 Effect of chemical treatments
  • Fig. 9.3. Effect of chemical treatment on the sorption behaviour of PALF/LDPEcomposites (Fibre loading 20%. temperature 28OC)
  • Fig.9.4. Effect of temperature on water absorption behaviour of PALF/LDPE composites (Fibre loading 20%)
  • Fig. 9.5. Sorption behaviour of PALF/LDPE composites in different solvents (Fibre loading 20%. temperature 28OC)
  • 9.2.3 Moisture sorption mechanism and kinetics
  • Table 9.1. Dependence of moisture sorption constants n and k on fibre loading for PALF/LDPE composites.
  • Table 9.2. Variation of n and k values for different types of chemical treatmentsin PALF/LDPE composites.
  • Table 9.3. Values of moisture diffusion, sorption and permeation coefficients of PALF/LDPE composites at different temperatures and fibre loading
  • Table 9.4. Values of moisture diffusion, sorption and permeation coefficients of PALF/LDPE composites at different temperatures and chemicaltreatments.
  • Fig. 9.6. Dependence of diffisivity (D) on concentration for PALF/L.DPE composite at different fibre loading.
  • Fig. 9.7. Dependence of difFusivity on concentration for different chemicaltreatments (Fibre loading 20%, temperature 28°C)
  • Table 9.5. Activation enerby values of untreated PALF/LDPE composites
  • Table 9.6. Activation energy values of treated PALF/LDPE cornposltes
  • Table 9.7. Thermodynamic functions relating to moisture sorption inPALF/LDPE comoosites.
  • Fig. 9.8. Plot of log (C, -C4, ) versus time for PALF/LDPE composite at different fibreloading
  • Fig. 9.9. Plot of log (C-C4, ) versus time for PALF/LDPE composite at differentchemical treatments (Fibre loading 20%)
  • Table 9.8. Rate constant values for PALF/LDPE composites at different fibre loadings.loadings
  • .Table 9.9. Rate constant for PALF/LDPE composites for different fibre treatments
  • 9.2.4 Comparison with theory
  • Fig.9.10. Comparison between experimental and theoretical sorption curves ofPALF/LDPE composite at 30% fibre loading.
  • 9.2.5 Effect of water immersion on mechanical properties
  • Fig.9.11. Effect of water absorption on tensile strength of PALF/LDPE composites at different fibre loading.
  • Fig.9.12. Effect of chemical treatments on tensile strength of PALF/L.DPEcomposites after immersion in water at diferent fibre loading
  • Table 9.10. Tensile properties of PALF/LDPE composites after immersion inwater.
  • Fig.9.13. Effect of hot water (70°C) immersion on tensile strength ofPALF/LDPE composites at different fibre loading.
  • Fig. 9.14. SEM photographs of PALF/LDPE composites after immersion in water showing: (a) fibre splitting and pull out in untreated sample, (b) treated fibre composite-no damage on fibre surface.
  • Fig.9.15. Effect of fibre orientation on tensile strength of PALF/LDPEcomposites at different fibre loading (Temperature 28OC)
  • Table9.11. Effect of UV radiation of flexural properties of PALF/LDPEcomposites at different fibre loading.
  • Table 9.12. Effect of UV radiation of flexural properties of PALF/LDPE composites after chemical treatment (20 wt % fibre loading)
  • 9.3 References
  • Cost-effectiveness of PALF / LDPE Composites
  • CONCLUSION
  • Future Outlook.
  • 1. Fabrication of industrial products
  • 2. Fracture behaviour
  • 3. Crystallisation
  • 4. Hybrid fibre reinforced composites
  • APPENDICES
  • APPENDIX 1: Publications in International Journals
  • APPENDIX 2: Papers Presented in NationaVlnternational Conferences
  • REPRINTED FROM: MATERIALS LETTERS
  • Short Pineapple-Leaf-Fiber-Reinforced Low-DensityPolyethylene Composites
  • THERMOGRAVIMETRIC AND DYNAMIC MECHANICAL THERMAL ANALYSIS OF PINEAPPLE FIBRE REINFORCED POLYETHYLENE COMPOSITES
  • Melt rheological behaviour of shortpineapple fibre reinforced low densitypolyethylene composites