• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 210
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • PREFACE
  • LIST OF PUBLICATIONS
  • 1. INTRODUCTION
  • 1.1. Introduction
  • 1.2. Organic Semiconductors
  • 1.3. Molecular Structure
  • 1.4. Earlier Studies on Phthalocyanines
  • A. Electrical Studies
  • Fig. 1.3.1: Basic structural unit of a phthalocyanine molecule
  • Fig. 1.3.2: Unit cell of a base centered phthalocyanine molecule
  • Fig. 1.3.3: Normal projection of two molecules of the metalsubstituted phthalocyanine
  • B. Optical Studies
  • C. Structural Studies
  • D. Photoconductivity Studies
  • References
  • 2. APPARATUS AND EXPERIMENTAL TECHNIQUES USED IN THE PRESENT STUDY
  • 2.1. Introduction
  • 2.2. Methods of Preparation of Thin Films
  • 2.3. Thermal Evaporation
  • 2.4. Effect of Residual Gases
  • 2.5. Effect of Vapour Beam Intensity
  • 2.6. Effect of Substrate Surface
  • 2.7. Effect of Evaporation Rate
  • 2.8. Contamination from Vapour Source
  • 2.9. Purity of the Evaporating Materials
  • 2.10. Production of Vacuum
  • 2.11. Oil Sealed Rotary Pump
  • Fig. 2.11.1: Schematic diagram of the cross section of an oil sealed rotcoy pump
  • 2.12. Diffusion Pump
  • Fig. 2.12.1: Schematic diagram of the cross section of a diffusion
  • 2.13. Vacuum Coating Unit
  • Fig. 2.13.1: Schematic diagram of a vacuum coating unit
  • Fig. 2.13.2: Schematic representation of Pirani Gauge
  • Fig. 2.13.3: Schematic representation of Penning gauge
  • 2.14. Preparation of Films
  • Fig. 2.13.4: Photograph of the coating unit and accessories
  • 2.15. Substrate Cleaning
  • 2.16. Thickness Measurement
  • 2.17. Tolanskys Multiple Beam Fizeau Fringe Method
  • Fig. 2.17.1: Schematic representation of the multiple beam interference method
  • 2.18. Substrate Heater
  • 2.19. Sample Annealing
  • Fig. 2.19.1: Block diagram of the temperature controller cum recorder
  • 2.20. Conductivity Cell
  • Fig. 2.19.2: Photograph of the post deposition annealing furnace and controller cum recorder set up
  • Fig. 2.20.1: Schematic diagram of the cross section of the conductivity cell
  • 2.21. Keithley Programmable electrometer 617
  • Fig. 2.21.1: Schematic diagram for the electrical conductivity measurement (a) two probe method (b) four probe method
  • Fig. 2.21.2: Photograph of the elecrical conductivity experimental set up
  • 2.22. UV-Visible Spectrophotometer
  • 2.23. X-ray Diffractometer
  • Fig. 2.22.1: Block diagram of the optical system of the spectrophotometer (Shimadzu 160 A)
  • Fig. 2.22.2: Block diagram of the electrical system of the spectrophotometer (Shimadzu 160 A)
  • Fig. 2.22.3: Photograph of the Shimadzu 160 A spectrometer
  • Fig. 2.23.1. B!ock Diagram of XD 610 diffractometer
  • Fig. 2.23.2: Photograph of the XD 610 diffractometer
  • References
  • 3. ELECTRICAL CONDUCTIVITY STUDIES IN COPPER PHTHALOCYANINE, COBALT PHTHALOCYANINE AND LEAD PHTHALOCYANINE THIN FILMS
  • 3.1. Introduction
  • 3.2. Theory
  • 3.3. Experiment
  • 3.4. Results and Discussion
  • A. Dependence of film thickness
  • Fig. 3.4.1 Plot of Lnσ vs 1000/T for CuPc film of thickness 2261, 2877, 3802 and 5058 A
  • Fig. 3.4.2 Plot of Lnσ vs 1000/T for CoPc film of thickness 1645, 4658, 7324 and 8152 A
  • Fig. 3.4.3 Plot of Lnσ vs 1000IT for PbPc film of thickness 1440, 2837, 4251 and 5490 A
  • B. Dependence of Substrate temperature
  • Fig. 3.4.4 Plot of Lnσ vs 1000/T for CuPc films of thickness 4100 Aevaporated at Ts = 50, 100, 150 and 200
  • Fig. 3.4.5 Plot of Lnσ vs 1000/T for CoPc films of thickness 2900 Aevaporated at Ts=50, 100, 150 and 200
  • Fig. 3.4.6 Plot of Lnσ vs 1000TT for PbPc films of thickness 3150 Aevaporated at Ts=50, 100, 150 and 200
  • C. Dependence of annealing temperature
  • Fig. 3.4.7 Plot of Lnσ vs 1000/T for CuPc films of thickeness 4100 A annealed at Ta=50, 100, 150 and 200
  • Fig. 3.4.8 Plot of Lnσ vs 1000/T for CoPc films of thickness 2900 A annealed at Ta=50, 100, 150 and 200
  • Fig. 3.4.9 Plot of Lnσ vs 1000/T for PbPc films of thickness 3150 A annealed at Ta=50, 100, 150 and 200
  • 3.5. Conclusion
  • References
  • 4. OPTICAL STUDIES IN COPPER PHTHALOCYANINE COBALT PHTHALOCYANINE AND LEAD PHTHALOCYANINE THIN FILMS
  • 4.1. Introduction
  • 4.2. Theory
  • Fig. 4.2.1: Direct transition from valence band to conduction band
  • Fig. 4.2.2: Indirect transition from valence band to conductionband
  • Fig. 4.2.3: Illustration of Burstein Moss shift
  • 4.3. Experiment
  • 4.4. Results and Discussion
  • 4.5. Conclusion
  • References
  • 5. STRUCTURAL STUDIES IN COPPER PHTHALOCYANINE, COBALT PHTHALOCYANINE AND LEAD PHTHALOCYANINE THIN FILMS
  • 5.1. Introduction
  • 5.2. Theory
  • 5.3. Experiment
  • 5.4. Results and Discussion
  • A. Effect of Annealing
  • 5.5. Conclusion
  • References
  • 6. PHOTOCONDUCTIVITY STUDIES IN COPPER PHTHALOCYANINE COBALT PHTHALOCYANINE AND LEAD PHTHALOCYANINE THIN FILMS
  • 6.1. Introduction
  • 6.2. Mechanisms of Photoconduction
  • 6.3. Experiment
  • A. Voltage-Current Characteristics
  • B. Determination of photothermal activation energy
  • C. Dependence of Incident Intensity
  • D. Dependence of Incident Energy
  • 6.4. Results and Discussion
  • 6.5. Conclusion
  • References
  • 7. CONCLUSION