• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 247
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE 1
  • CERTIFICATE-2
  • DECLARATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • 1. INTRODUCTION
  • 1.1.Introduction
  • 1.1.Latex
  • 1.2. Primary processing
  • 1.3. Properties
  • 1.4. Product manufacture
  • 1.5. Modified forms of NR
  • 1.6. Physical modifications
  • 1.6.1. Superior processing rubber
  • 1.6.2. Viscosity stabilization
  • 1.6.3. Oil extended NR (OENR)
  • 1.6.4. Powdering / Granulation
  • 1.6.5. Thermoplastic rubber
  • 1.7. Chemical modifications
  • 1.7.1. Grafting
  • 1.7.2. Hydrogenation
  • 1.7.3. Hydrohalogenation
  • 1.7.4. Chlorination
  • 1.7.5. Isomerization
  • 1.7.6. Cyclization
  • 1.7.7. ENPCAF modification
  • 1.7.8. Maleic derivatives
  • 1.7.9. Epoxidation
  • 1.7.10. Depolymerization
  • 1.8. Liquid rubbers
  • 1.9. Economics of chemical modification
  • 1.10. Degradation and stabilization of polymers
  • 1.10.1. Thermal degradation
  • 1.10.2. Oxidative degradation
  • 1.10.3. Oxidized rubber
  • 1.10.4. Termination
  • 1.11. Depolymerized NR
  • 1.12. Scope for present work
  • References
  • FIGURES
  • Fig.1.1 Modifications on NR
  • Fig.1.2. Natural rubber in India
  • 2. EXPERIMENTAL TECHNIQUES
  • 2.1. Experimental materials
  • 2.1.1. Natural rubber
  • 2.1.2. Peptizing agent
  • 2.1.3. Nitrile rubber
  • 2.1.4. Rubber chemicals
  • 2.1.5. Other chemicals
  • 2.2. Depolymerization
  • 2.2.1. Thermal
  • 2.2.2. Chemical
  • 2.3. Compounding
  • 2.4. Vulcanization
  • 2.5. Viscosity measurements
  • 2.5.1. Low viscosity
  • 2.5.2. Medium viscosity
  • 2.5.2.1. Brookfield viscometer
  • 2.5.2.2. Rheomat 30
  • 2.5.2.3. Haake rotoviscometer RV 1
  • 2.5.3. High viscosity
  • 2.5.3.1. Capillary rheometer
  • 2.5.3.2. Test procedure
  • 2.5.3.3. Extrudate swell
  • 2.6. Thermal analysis
  • 2.6.1. Differential scanning calorimeter
  • 2.6.2. Thermogravimetry
  • 2.7. Limiting oxygen index
  • 2.8. Physical test methods
  • 2.8.1. Modulus, tensile strength and elongation
  • 2.8.2. Tear resistance
  • 2.8.3. Hardness
  • References
  • FIGURES
  • Fig. 2.1. Drive unit of Haake viscometer
  • Fig. 2.1 Temperature vessel
  • Fig. 2.3. Range of viscosity masurements
  • Fig. 2.4. Capillary extrusion assembly
  • 3. CHARACTERIZATION AND RHEOLOGICAL STUDIES ON LNR
  • 3.1. Introduction
  • 3.1.1. Viscosity
  • 3.1.2. Coaxial cylinder viscometer
  • 3.1.3. Wiesenberg effect
  • 3.1.4. Temperature effect
  • 3.1.5. Particle size effect
  • 3.2. Experimental
  • 3.2.1. Depolymerization
  • 3.2.2. Rheomat 30
  • 3.2.3. LNR
  • 3.2.4. Temperature stabilization
  • 3.3. Results and discussion
  • 3.3.1. Properties
  • 3.3.2. Viscosity studies
  • 3.3.2.1. Shear rate-shear stress relationship
  • 3.3.2.2. Effect of shear rate on viscosity
  • 3.3.2.3. Effect of molecular weight on viscosity
  • 3.3.2.4. Effect of temperature on viscosity
  • References
  • FIGURES
  • Fig. 3.1. Sketch of coaxial cylinder viscometer
  • Fig. 3.2.H NMR spectrum of LNRl
  • Fig. 3.3. IR spectrum of LNRI
  • Fig. 3.4. GPC of LNR samples
  • Fig. 3.5. Plots of shear rate vs shear stress
  • Fig. 3.6. Orientation of structure on shearing
  • Fig. 3.7. Temperature vs pseudoplasticity index
  • Fig. 3.8. Shear rate vs viscosity at 200C
  • Fig. 3.9. Normal stress effect
  • Fig. 3.10. Molecular weight vs viscosity
  • Fig. 3.1 1. Effect of temperature on viscosity
  • Fig. 3.12. 1/T vs viscosity
  • 4. CHEMICAL MODIFICATION BY PHOSPHORUS ADDITION
  • 4.1. Introduction
  • Epoxidation reaction
  • Side reactions
  • 4.2. Preparation of LNR
  • 4.3. Purification
  • 4.4. Phosphorus modification
  • 4.5. Results and discussion
  • References
  • FIGURES
  • Fig. 4.1.1H NMR spectrum of LNR
  • Fig, 4.2. I3C NMR spectrum of LNR
  • Fig. 4.3. IR spectrum of LNR
  • Fig. 4.4. 1H NMR spectrum of ELNR
  • Fig. 4.5.1H NMR spectrum of ELNR enlarged.
  • Fig. 4.6. 13C NMR spectrum of ELNR
  • Fig. 4.7. IR spectra of ELNR and separated fractions
  • Fig. 4.8. 1H NMR spectrum of ELNR.A
  • Fig. 4.9. 1H NMR spectrum nf Fl NR R
  • Fig. 4.10. 1H NMR spectrum of dichloromethane extract (1P1)
  • Fig. 4.11. 1H NMR spectrum of methanol solubles (2P1)
  • Fig. 4.12. 1H NMR spectrum of phosphorus modified polymer (2P2)
  • Fig. 4.13. 13C NMR spectrum of dichloromethane extract (IPI)
  • Fig. 4.14. 13C NMR spectrum of methanol solubles (2P1)
  • Fig. 4.15. 13C NMR spectrum of phosphorus modified polymer.
  • Fig. 4.16. 31P NMR spectrum of dibutylphosphate
  • Fig. 4.17. 31P NMR spectrum of dichloromethane extract (1P1)
  • Fig. 4.18. 31P NMR spectrum of methanol solubles
  • Fig. 4.19. 31P NMR spectrum of phosphorus modified polymer (2P2)
  • Fig. 4.20. DSC plots of modified polymer 1P2 and 2P2
  • Fig. 4.21. TGA curves of the modified polymers in nitrogen
  • Fig. 4.22. TGA curves of the modified polymers in air
  • Fig. 4.23. TGA curves of the modified polymers in oxygen
  • 5. LIQUID NATURAL RUBBER AS A VISCOSITY MODIFIER IN NBR PROCESSING
  • 5.1. Introduction
  • 5.2. Experimental
  • 5.2.1. Materials
  • 5.2.2. Preparation of compounds
  • 5.2.3. Testing
  • 5.3. Results and discussion
  • 5.3.1. Cure characteristics
  • 5.3.2. Capillary rheometric studies
  • 5.3.2.1. Shear stress vs. shear rate
  • 5.3.2.2. Influence of shear rate on viscosity
  • 5.3.2.3. Effect on flow index
  • 5.3.2.4. Influence of temperature
  • 5.3.2.5. Die swell
  • 5.3.2.6. Effect of shear rate on melt elasticity
  • 5.3.2.7. Vulcanizate properties
  • 5.3.2.8. Evaluation of superposition shift factor
  • References
  • FIGURES
  • Fig. 5.1. Effect of plasticizers on cure.
  • Fig. 5.2. Shear stress vs shear rate at 90°C
  • Fig. 5.3. Viscosity vs shear rate at 900°C
  • Fig. 5.4. Influence of plasticizer on flow index
  • Fig. 5.5. Temperature vs viscosity and flow index
  • Fig. 5.6. Log viscosity vs 1/T
  • Fig. 5.7. Die swell (%) at 120°C
  • Fig. 5.8. Photograph of extrudates
  • Fig. 5.9. Melt elasticity at 333 s-1 and 120°C
  • Fig. 5.10. Physical properties of vulcanizates
  • Fig. 5.11. Dynamic properties of vulcanizates
  • Fig. 5.12. aT vs temperature
  • Fig. 5.13. Superposition master curve.
  • 6. STRESS RELAXATION IN NITRILE RUBBER COMPOUNDS CONTAINING LNR
  • 6.1. Introduction
  • 6.2. Experimental
  • 6.2.1. Materials
  • 6.2.2. Compounding
  • 6.2.3. Stress-strain measurements
  • 6.3. Results and discussion
  • 6.3.1. Cure
  • 6.3.2. Modulus
  • 6.3.3. Elongation at break
  • 6.3.4. Stress relaxation
  • 6.3.4.1. Relaxation at 200% strain
  • 6.3.4.2. Relaxation at 50% strain
  • 6.3.4.3. Prestretching
  • 6.3.5. Effect of ageing
  • 6.3.6. Permanent set
  • References
  • FIGURES
  • Fig.6.1. Effect of plasticizer on cure
  • Fig.6.2. Effect of plasticizer on modulus
  • Fig.6.3. Effect of plasticizer on elongation at break
  • Fig.6.4. Stress relaxation of DBP compounds a t 200% elongation
  • Fig.6.5. Stress relaxation of LNR compounds at 200% elongation
  • Fig.6.6. Effect of plasticiner on relaxation at 200% elongation
  • Fig.6.7. Stress relaxation of DBP compounds at 50% elongation.
  • Fig.6.8. Stress relaxation of LNR compounds at 50% elongation
  • Fig.6.9. Effect of plasticizer on relaxation at 50% elongation.
  • Fig.6.10. Relaxation after prestretching in DBP compounds at 50% elongation.
  • Fig.6.11. Relaxation after prestretching in LNR compounds at 50% elongation
  • Fig.6.12. Effect of plasticizer content after prestretching
  • Fig.6.13. Relaxation after ageing in DBP compounds
  • Fig.6.14. Relaxation after ageing in LNR compounds
  • Fig.G.15. Effect of plasticizer content after ageing.
  • 7. PHYSICAL AND RHEOLOGICAL CHARACTERISTICS OF LIQUID NATURAL RUBBER MODIFIED BITUMEN
  • 7.1. Introduction
  • 7.2. Materials and methods
  • 7.2.1. Bitumen
  • 7.2.2. Liquid natural rubber
  • 7.2.3. Preparation of samples
  • 7.2.4. Viscosity measurements
  • 7.2.5. Lap shear test
  • 7.2.6. Softening point
  • 7.2.7. Ductility
  • 7.2.8. Penetration
  • 7.3. Results and discussion
  • 7.3.1. Liquid natural rubber
  • 7.3.2. Softening point
  • 7.3.3. Ductility
  • 7.3.4. Penetration
  • 7.3.5. Lap shear
  • 7.3.6. Viscosity studies
  • 7.3.6.1. Effect of shear rate
  • 7.3.6.2. Effect of temperature
  • 7.3.6.3. Effect of temperature on viscosity
  • 7.3.6.4. Evaluation of superposition shift factor
  • 7.3.7. Effect of LNR content
  • References
  • FIGURES
  • Fig. 7.1. Test samples for lap shear test
  • Fig. 7.2. GPC Chromatogram of LNR sample
  • Fig. 7.3. Influence of LNR on shear strength
  • Fig. 7.4. Shear stress vs shear rate at 100°C (B)
  • Fig 7.5. Shear stress vs shear rate at 100°C (BB)
  • Fig. 7.6. Shear stress vs temperature at 15 s-l (B)
  • Fig. 7.7. Shear stress vs temperature at 16.6 s-l (BB)
  • Fig. 7.8. Viscosity vs 1/T K (B)
  • Fig. 7.9. viscosity vs 1/T K (BB)
  • Fig. 7.10. Shift factor vs temperature
  • Fig. 7.11. Suerposition maser curve
  • Fig. 7.12. Effect of LNR on shear stress at 100°C (B)
  • Fig. 7.13. Effect of LNR on shear stress at 100°C (BB)
  • Fig. 7.14. Effect of LNR on Viscosity of soft bitumen (15 s-1)
  • Fig. 7.15. Effect of LNR on viscosity of blown bitumen (16.6 s-1)
  • 8. FLAMMABILITY AND THERMAL PROPERTIES OF PHOSPHORUS MODIFED LIQUID NATURAL RUBBER
  • 8.1.Introduction
  • 8.1.1. Flammability
  • 8.1.2. Ignition phenomena
  • 8.1.3. Propagation
  • 8.1.4. Extinction of polymer combustion
  • 8.1.5. Phosphorus containing flame retardants
  • 8.2. Experimental
  • 8.3. Results and discussion
  • 8.3.1. Properties of compounds
  • 8.3.2. Vulcanizate properties
  • 8.3.3. Thermogravimetric studies
  • 8.3.4. Burning behaviour
  • References
  • FIGURES
  • Fig. 8.1. TGA Thermogram of compound A in air.
  • Fig. 8.2. TGA Thermogram of compound B in air
  • Fig. 8.3. TGA Thermogram of compound C in air
  • Fig. 8.4. TGA Thermogram of compound D in air
  • Fig. 8.5. TGA Thermogram of compound E in air.
  • Fig. 8.6. TGA Thermogram of compound F in air.
  • Fig. 8.7. TGA Thermogram of compound A in oxygen.
  • Fig. 8.8. TGA Thermogram of compound B in oxygen.
  • Fig. 8.9. TGA Thermograrn of compound C in oxygen
  • Fig. 8.10. TGA Thermogram of compound D in oxygen
  • Fig. 8.1 1. TGA Thermogram of compound E in oxygen
  • Fig. 8.12. TGA Thermogram of compound F in oxygen
  • Fig 8.13. Flame length for different concentrations of oxygen.
  • 9. SUMMARY CONCLUSION AND SCOPE FOR FUTURE WORK
  • 9.1. Summary
  • 9.2. Conclusions
  • 9.3. Scope for future work
  • CURRICULAM VlTE
  • List of Scientific Publications