• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 407
 
Full Screen

  • TITLE -1
  • TITLE-2
  • DEDICATION
  • DECLARATION
  • CERTIFICATE-1
  • CERTIFICATE-2
  • CERTIFICATE-3
  • ACKNOWLEDGEMENT
  • ABSTRACT
  • CONTENTS
  • LIST OF TABLES
  • LIST OF FIGURES
  • GLOSSARY OF TERMS
  • PREFACE
  • 1. INTRODUCTION
  • 1.1. Composites
  • Fig.1.1. Fibre reinforced plastic composites used in 2002
  • 1.1.1. Classification of composites
  • Fig.1.3. Schematic representation of classification of composites
  • Fig.1.4. Schematic representation of a laminar composite
  • 1.1.2. Hybrid Fibre Composites
  • Fig.1.5. Schematic representation of properties of different hybrid Combination
  • 1.1.3. Textile Composites
  • Fig.1.6. Typical plain weave fabric
  • 1.1.4. Reinforcing mechanism of short fibre composites
  • 1.1.5. Interface
  • Fig.1.9. Schematic model of interphase
  • 1.1.6. Fabrication of composites
  • Fig.1.10. Schematic representation of RTM technique
  • 1.2. Matrix
  • 1.2.1. Polymers
  • 1.3. Fibres
  • 1.3.1. Synthetic fibres
  • 1.3.2. Natural fibres
  • 1.3.3. Chemical composition of Plant fibres
  • 1.3.4. Micro structure of plant fibres
  • Fig.1.14. Microstructure of plant fibre
  • 1.3.5. Different Plant Fibres
  • 1.3.6. Extraction of plant fibres
  • 1.3.7. Advantages and Disadvantages of Plant fibres
  • 1.4. Natural fibre reinforced polymer composites
  • 1.4.1 Green Composites
  • 1.4.2. Cellulose Nanocomposites
  • 1.4.3. Plant fibre reinforced polyester composites
  • 1.4.4. Applications of Biobased composites
  • 1.5. Major challenges / gap
  • 1.6. Scope of the present work
  • 1.7. Major Objectives
  • References
  • 2. EXPERIMENTAL
  • 2.1 Materials
  • 2.2. Mechanical testing of banana and sisal fibre
  • 2.3. Chemical modification of the fibre surface
  • 2.4. Preparation of the composites
  • 2.5. Mechanical property measurements
  • 2.6. Abrasion measurements
  • 2.7. Dynamic Mechanical Analysis
  • 2.8. Water absorption Studies
  • 2.9. Dielectric measurements of composites
  • 2.10. Thermophysical measurements
  • References
  • 3. MECHANICAL PROPERTIES OF SHORT BANANA / SISAL HYBRID FIBRE REINFORCED POLYESTER COMPOSITES
  • 3.1. Introduction
  • 3.2. Results and discussion
  • 3.2.1. Intrinsic properties of fibres
  • 3.2.2. Tensile properties
  • Fig.3.3. Scanning electron micrographs of the tensile fracturesurface of hybrid composites
  • Fig.3.6. Scanning electron micrograph
  • 3.2.3. Flexural properties
  • 3.2.4. Impact properties
  • 3.2.5. Abrasion Properties
  • 3.2.6. Hybrid Effect
  • 3.3. Conclusions
  • References
  • 4. DYNAMIC MECHANICAL ANALYSIS OF SHORT BANANA / SISAL HYBRID FIBRE REINFORCED POLYESTER COMPOSITES
  • 4.1. Introduction
  • 4.2. Results and Discussion
  • 4.2.1. Effect of fibre loading
  • 4.2.2. Effect of varying the relative volume fraction of banana and sisal
  • 4.2.3. Effect of layering pattern of fibres
  • 4.2.4. Effect of frequency
  • 4.2.5. Application of time-temperature superposition principle to thecomposite.
  • 4.2.6. Energy of activation for glass transition temperature
  • 4.2.7. Cole–cole plots
  • 4.2.8. Theoretical Modelling
  • 4.3. Conclusions
  • References
  • 5. CHEMICAL MODIFICATION OF BANANA AND SISAL FIBRES AND FABRICATION OF THEIR COMPOSITES
  • 5.1 Probing the Polarity of Chemically Modified Banana and Sisal Fibres by means of Solvatochromic Techniques
  • 5.1.1. Introduction
  • 5.1.2. Results and Discussion
  • 5.1.3. Conclusions
  • References
  • 5.2 Effect of Fibre Surface Modification on Mechanical Properties of Short Banana / Sisal Hybrid Fibre Reinforced Polyester Composites
  • 5.2.1. Introduction
  • 5.2.2 Results and discussion
  • Fig.5.2.1. Scanning electron micrographs of the surface of the untreated (a) banana
  • Fig. 5.2.2. Scanning electron micrographs of the surface of (magnificationx 500) (a) untreated (b) silane 1 (c) silane 2 (d) A1100 (e) PSMA and (f) 10 % NaOH treated banana fibre.
  • Fig. 5.2.3. Scanning electron micrograph of (a) silane 1 (b) silane 2 and (c) A1100 treated sisal fibre (x 500)
  • 5.2.3. Conclusions
  • References
  • 5.3 Viscoelastic Properties of Chemically Modified Short Banana/Sisal Hybrid Fibre Reinforced Polyester Composites
  • 5.3.1. Introduction
  • 5.3.2. Results and discussion
  • 5.3.3. Conclusions
  • References
  • 6. WATER SORPTION STUDIES OF SHORT BANANA / SISAL HYBRID FIBRE REINFORCED POLYESTER COMPOSITES
  • 6.1. Introduction
  • 6.2. Results and Discussion
  • 6.2.1. Water uptake of composites
  • 6.2.2. Kinetics of water sorption
  • 6.2.3. Diffusion, sorption and permeation
  • 6.2.4. Theoretical modeling
  • References
  • 7. ELECTRICAL AND THERMOPLASTIC PROPERTIES OF SHORT BANANA / SISAL HYBRID FIBRE REINFORCED POLYESTER COMPOSITES
  • 7.1 Electrical Properties of Banana / sisal HybridFibre Reinforced Polyester Composites
  • 7.1.1. Introduction
  • 7.1.2. Results and Discussion.
  • 7.1.3 Conclusions
  • References
  • 7.2 Thermophysical Properties of Banana / Sisal Hybrid Fibre Reinforced Polyester Composites
  • 7.2.1. Introduction
  • 7.2.2. Example of measurement
  • Fig.7.2.1. Thermophysical measurements set up.
  • 7.2.3. Results and discussion
  • 7.2.4. Conclusions
  • References
  • 8. SHORT BANANA/SISAL HYBRID FIBRE REINFORCED POLYESTERCOMPOSITES - A COMPARISON BETWEEN COMPRESSIONMOULDING AND RESIN TRANSFER MOULDING
  • 8.1. Introduction
  • 8.2. Results and Discussion
  • 8.2.1 Mechanical properties
  • 8.2.2. Void content
  • 8.2.3. Dynamic mechanical properties
  • 8.2.4. Abrasion properties
  • 8.2.5. Water sorption behaviour
  • 8.3. Conclusions
  • References
  • 9. WOVEN FABRIC COMPOSITES BY COMPRESSION ANDRESIN TRANSFER MOULDING
  • 9.1 Mechanical Performance of Banana and Sisal Woven Fabric
  • 9.1.1. Introduction
  • 9.1.2. Results and Discussion
  • Fig.9.1.1. The weave architecture
  • Fig.9.1.2. Arrangement of three layers of fabric in parallel way
  • 9.1.3. Conclusions
  • References
  • 9.2 Dynamic Mechanical Properties of Banana and Sisal Textile Composites Fabricated by Compression and Resin Transfer Moulding
  • 9.2.1. Introduction
  • 9.2.2. Results and Discussion
  • 9.2.3. Conclusions
  • References
  • 10. CONCLUSIONS AND FUTURE OUTLOOK
  • 10.1. Conclusions
  • 10.2. Future Outlook
  • CURRICULUM VITAE