• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 337
 
Full Screen

  • TITLE
  • CERTIFICATE
  • DECLARATION
  • RESUME
  • ACKNOWLEDGEMENT
  • PREFACE
  • CONTENTS
  • CHAPTER 1
  • 1.1. Polymer Blends
  • 1.2. Polymer Miscibility
  • Fig.1.1: Schematic representation for the variation of free energychange with composition in binary polymer mixtures [6]
  • 1.3. Compatibilisation
  • Fig.1.2: (a) Interface between immiscible polymers and (b) interfacialdensity profile between immiscible polymers [9]
  • 1.4. Strategies for Compatibilisation in Polymer Blends
  • 1.4.1. Physical compatibilisation
  • Fig.1.3: Conformations of different types of copolymers at the interfacediblock copolymers (b) end grafted chains (c) triblock copolymers (d) multiply grafted chains (e) random copolymer [61]
  • 1.4.2. Reactive compatibilisation
  • Fig.1.4: Schematic of the interfacial reaction of reactive chains [63]
  • 1.4.2.1. Chemical reactions in reactive compatibilisation
  • Table 1.1: Reactions involved in reactive compatibilisation [70]
  • 1.4.2.1.1. Amine-anhydride (imidisation) reaction
  • Fig.1.5: Scheme of interface grafting by reaction between anhydridegroup and amine end group of polyamide [73]
  • 1.4.2.1.2. Amine-carboxylic acid (amidation) reaction
  • Fig.1.6: Reaction of SAN-amine with PC to form SAN-g-PC [78]
  • 1.4.2.1.3. Amine-Epoxide reaction
  • Fig.1.7: Scheme of interface grafting by reaction between epoxidegroup and amine end group of polyamide [85]
  • 1.4.2.1.4. Carboxylic acid-epoxide reaction
  • Fig.1.8: Scheme of reaction between a carboxylic and an epoxidegroups [88]
  • 1.4.2.1.5. Ring opening reactions
  • Fig.1.9 (a): Scheme of reaction between oxazoline with amine andcarboxyl end groups of polyamide [91]
  • Fig.1.9 (b): Scheme of reaction between epoxide and (a) with –COOH (b) with -OH groups of PBT [92]
  • 1.4.2.1.6. Transreactions
  • Table 1.2: Interchange reactions between polycondensates [1]
  • 1.5. Ionic Interaction
  • 1.6. Dynamic Vulcanisation.
  • 1.7. Addition of a Third Polymer (partially) Miscible with all Blend Phases
  • 1.8. Addition of Reactive Fillers
  • 1.9. Addition of Low Molecular Weight Chemicals
  • 1.10. Solid-state Shear Pulverization
  • 1.11. Factors Affecting the Efficiency of Reactive Compatibilisation
  • 1.11.1. Reactive Group Content and End-group Configuration
  • 1.11.2. Effect of miscibility of the reactive compatibiliser with one ofthe phases
  • Fig.1.10: Schematic representation of possible modes of location ofgraft copolymers in a reactively compatibilised blenddepending on the level of its interaction with the dispersedphase [117]
  • Fig.1.11: Weight average particle diameter as a function of extrusiontime for the blend PA6/ (PMMA/SMA) 75 (/20/5) withdifferent MA contents of SMA [37]
  • 1.11.3. Stability of the copolymer at the interface
  • Table 1.3: Average dimensions of phases in annealed polymer melt blends [121]
  • 1.11.4. Molecular weight of the compatibiliser precursors
  • 1.12. Morphological Aspects of Reactive Polymer Blending
  • Fig.1.12: A schematic representation of different types ofmorphologies of polymer blends [124]
  • Table 1.4: Commercial examples of immiscible polymer blends [124]
  • 1.12.1. General aspects of morphology development
  • Fig.1.13: Schematic diagram of the coarsening process [133]
  • 1.12.2. Morphology development during processing
  • Fig.1.14: Schematic representation of morphology development incompatibilised and uncompatibilised blends [145]
  • 1.12.3. Phase morphology development in reactive blending
  • 1.13. Mechanism of Compatibilisation in Reactive Blending
  • Fig.1.15: Schematic illustration of droplet coalescence in immisciblepolymer blends with and without a copolymer at interface [153]
  • Fig.1.16: Two mechanisms proposed for block copolymer suppression ofcoalescence (a) surface tension gradient (Marangoni force) and (b) steric repulsion [157]
  • 1.14. Theories of Compatibilisation
  • 1.14.1. Noolandi’s heory
  • 1.14.2. Leibler’s theory
  • 1.14.3. Paul and Newman’s theory
  • 1.14.4. Favis’ theory
  • 1.14.5. Anastasiadis theory
  • 1.14.6. Utracki and Shi’s theory
  • 1.14.7. Tang and Huang’s theory
  • 1.15. Reactive Compatibilisation of Polyamide/Polystyrene Based Blends
  • Fig.1.17: (a) PS/PA6 with 30% PA6 (b) PS/PSSAc/PA6 blends with30% PA6 [179]
  • Fig.1.18: Volume to surface area average particle size (DVS) vs. wt% ofanhydride functional PS added to 70/30 PA66/PS blend [72]
  • Fig.1.19: Schematic representation showing the molecularconformation of SMA at aPA/PS interface [180]
  • Case A
  • Case B
  • Case C
  • 1.16. Scope and Objectives of the Present Work
  • 1.17. References
  • CHAPTER 2
  • 2.1. Materials
  • Table 2.1: Material characteristics
  • 2.2. Experimental Techniques
  • 2.2.1. Blend preparation
  • 2.2.2. Phase morphology studies
  • 2.2.3. Mechanical properties
  • 2.2.4. Dynamic mechanical analysis
  • 2.2.5. Thermal analysis
  • 2.2.6. Rheology measurements
  • 2.2.7. Spectroscopic analysis
  • 2.2.8. Diffusion/transport studies
  • 2.2.9. Dielectric properties
  • CHAPTER 3
  • 3.1. Introduction
  • 3.2. Results and Discussion
  • 3.2.1. Uncompatibilised blends
  • 3.2.1.1. Analysis using scanning electron microscopy [SEM]
  • Fig.3.1: SEM micrographs of uncompatibilised PA/PS blends
  • Fig.3.2: Effect of blend ratio on dispersed particle size of uncompatibilisedPA/PS blends
  • Fig.3.3. Melt viscosity of PA and PS as a function of shear stress
  • 3.2.1.2. Region of phase inversion
  • Table 3.1: Percentage of continuity by solvent dissolution
  • Table 3.2: Modeling of phase inversion.
  • 3.2.2. Compatibilised blends
  • 3.2.2.1. Compatibilisation strategy
  • Scheme 3.1: Amine -anhydride mechanism
  • Scheme 3.2: Amide -anhydride mechanism
  • 3.2.2.2. Morphology refinement on compatibilisation with SMA8
  • Fig.3.4: SEM micrographs of N80 blends compatibilised with SMA8
  • Fig.3.5: Effect of SMA8 on the dispersed particle size of N80 blends.
  • Fig.3.6: Effect of SMA8 on the domain distribution of N80 blends
  • Table 3.3: Effect of SMA8 on Ai and IPD of N80 blends
  • Fig.3.7: SEM micrographs of N20 blends compatibilised with SMA8
  • Fig.3.8: Effect of SMA8 on the dispersed particle size of N20 blends.
  • Table 3.4: Effect of SMA8 on Ai and IPD of N20 blends
  • 3.2.2.3. Morphology refinement on compatibilisation with SEBS-g-MA
  • Fig.3.9: SEM micrographs of N80 blends compatibilised with SEBS-g-MA
  • Fig.3.10: Effect of SEBS-g-MA on the dispersed particle size of N80 blends
  • Fig.3.11: Effect of SEBS-g-MA on the domain distribution of N80blends
  • Table 3.5: Effect of SEBS-g-MA on Ai and IPD of N80 blends
  • 3.2.2.4. Morphology refinement on compatibilisation with SMA28
  • Fig.3.12: SEM micrographs of N80 blends compatibilised with SMA28
  • Fig.3.13: Effect of SMA28 on the dispersed particle size of N80 blends
  • Fig.3.14: Effect of SMA28 on the domain distribution of N80 blends
  • Table 3.6: Effect of SMA28 on Ai and IPD of N80 blends
  • 3.2.3. Compatibilisation efficiency- comparison.
  • Fig.3.15: Effect of compatibilisation on the domain distribution ofN80 blends
  • 3.2.4. Phase coarsening (coalescence) under quiescent conditions
  • Fig.3.16: SEM micrographs showing the effect of annealing on thedispersed particle size of (a) uncompatibilised N80 blends (b) N80 blends with 2% SMA8 (c) N80 blends with 5%SEBS-g-MA (d) N80 blends with 0.5% SMA28
  • Table 3.7: Effect of annealing on the particle size of compatibilised anduncompatibilised N80 blends.
  • 3.2.5. Comparison of the experimental compatibilisation data withtheory
  • Fig.3.17: Effect of compatibilisers on domain size reduction of N80blends (a) SMA8 (b) SEBS-g-MA (c) SMA28
  • Fig.3.18: Effect of compatibiliser concentration on the interfacial areaoccupied per molecule of the compatibiliser in N80 blends.
  • 3.3. Conclusion
  • 3.4. References
  • CHAPTER 4
  • 4.1. Introduction
  • 4.2. Results and Discussion
  • 4.2.1. Uncompatibilised blends
  • 4.2.2. Theoretical Modeling
  • 4.2.3. Compatibilised blends
  • 4.2.4. Mechanical performance- A comparison
  • 4.2.5. Essential Work of Fracture Analysis (EWF)
  • 4.3. Conclusion
  • 4.4. References
  • CHAPTER 5
  • Dynamic Mechanical Properties
  • 5.1. Introduction
  • 5.2. Results and Discussion
  • Theoretical modelling of the dynamic mechanical properties
  • Viscoelastic properties of compatibilised blends
  • CONCLUSION
  • References:
  • CHAPTER 6
  • 6.1. Introduction
  • 6.2. Result and Discussion
  • 6.2.1. Melting and crystallisation behaviour
  • 6.2.2. Thermogravimetric analysis
  • 6.3. Conclusion
  • 6.4. References
  • CHAPTER 7
  • 7.1. Introduction
  • 7.2. Results and Discussion
  • 7.2.1. Melt Viscosity of Binary Blends
  • 7.2.3. Extrudate morphology of uncompatibilised blends
  • 7.2.4. Effect of shear rate on extrudate morphology of compatibilised blends
  • 7.3. Conclusion
  • 7.4. References
  • CHAPTER 8
  • 8.1. Introduction
  • 8.2. Results and Discussion
  • 8.2.1. FTIR-Spectroscopy
  • 8.2.2. Solid state NMR spectroscopy
  • 8.3. Conclusion
  • 8.4. References
  • CHAPTER 9
  • 9.1. Introduction
  • 9.2. Results and Discussion
  • 9.2.1. Effect of blend ratio
  • 9.2.2. Effect of temperature on the sorption behaviour ofuncompatibilised blends
  • 9.2.3. Effect of compatibilisation on transport properties
  • 9.2.4. Effect of temperature on the sorption behaviour ofcompatibilised blends.
  • 9.2.5. Mechanism of diffusion
  • 9.2.6. Theoretical analysis of water sorption in uncompatibilised blends
  • 9.3. Conclusion
  • 9.4. References
  • CHAPTER 10
  • 10.1. Introduction
  • 10.2. Results and Discussion
  • 10.2.1. Uncompatibilised blends
  • 10.2.2. Compatibilised Blends
  • 10.3. Conclusion
  • 10.4. References
  • CHAPTER 11
  • 11.1. Conclusions
  • 11.2. Future Scope
  • References
  • GLOSSARY