• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 338
 
Full Screen

  • Title
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • Preface
  • Abbreviations
  • ABSTRACT
  • CONTENTS
  • List of Tables
  • List of Figures and Schemes
  • 1 Introduction
  • Introduction
  • 1.1 Silicon containing polymers
  • 1.1.1 Polysilanes
  • 1.1.2 Polycarbosilanes
  • Scheme 1.1. Yajimas process
  • 1.1.3 Polysilahydrocarbons
  • Scheme 1.2. Synthesis of polysilahydrocarbons
  • 1.1.4 Polysilazanes and polycarbosilazanes
  • 1.1.5 Polysilylcarbodiimides
  • 1.1.6 Polysiloxanes and polysilsesquioxanes
  • Scheme 1.4. Synthesis of polysiloxane
  • 1.2 Boron containing polymers
  • 1.2.1 Polymers derived from borazines
  • Scheme 1. 5. Synthesis of Polyborazylene
  • 1.2.2 Decaborane (14) -based polymers
  • Scheme 1. 6. Formation of B10H12-L2
  • Scheme 1.7. Synthesis of decaborane-based polymers
  • 1.2.3 Polymers derived from vinylpentaborane
  • 1.2.4 Polymers derived from boric acid
  • 1.3 Boron and silicon containing polymers
  • 1.3.1 From functional monomers of boron with functional monomers of silicon
  • 1.3.2 From functional monomers of boron and silicon with functional monomers of silicon
  • 1.3.3 Chemical modification of organosilicon polymers
  • Scheme 1. 8. Synthesis of boron-modified silazanes
  • 1.3.4 From single source precursors
  • 1.4 Polyborosiloxanes
  • 1.4.1 Borosiloxanes from boric acid
  • Scheme 1. 9. Synthesis of poly (borodiphenylsiloxane)
  • 1.4.2 Polymers from borate esters
  • Scheme 1. 10. Preparation of polyborosiloxanes and/or SiO2-B2O3 gels
  • Scheme 1.11. Preparation of polyborosiloxanes from silicic acid
  • 1.4.3 Sol-gel process
  • 1.4.4 Organically modified SiO2-B2O3 gels
  • 1.4.5 Applications of borosiloxanes
  • 1.5 End uses of preceramic polymers
  • 1.5.1 Protective coatings
  • 1.5.2 Ceramic fibers
  • 1.5.3 Binders for ceramics
  • 1.5.4 Matrix resins for CMC
  • 1.5.5 Ceramic foam
  • 1.6 Objective and scope of the present investigation
  • References
  • 2 Materials and Experimental Techniques
  • Materials and Experimental Techniques
  • 2.1 Materials
  • 2.1.1 Solvents
  • 2.1.2 Monomers
  • 2.1.3 Other reagents and materials
  • 2.2 Determination of char residue of phenolic resin
  • 2.3 Synthesis of borosiloxane oligomers from different alkoxysilanes
  • 2.3.1 Synthesis using solvent
  • 2.3.2 Solventless synthesis
  • 2.4 Curing of BSiEpVi oligomer
  • 2.5 Synthesis of borosiloxane oligomer from decaborane (14), APMDEOS and boric acid
  • 2.6 Polysilahydrocarbons for thermal degradation kinetics
  • 2.7 AO resistant materials
  • 2.8 Evaluation of AO resistance
  • 2.8.1 Polysilahydrocarbons
  • 2.8.2 Siloxane-imide-epoxy resin
  • 2.8.3 Phosphazene-based polymers
  • 2.9 Preparation of polyimide film modified with borosiloxane oligomer
  • 2.10 Ceramic conversion studies
  • 2.11 Preparation of ceramic coatings from borosiloxane oligomer
  • 2.12 Preparation of ceramic matrix composite
  • 2.12.1 Preparation of precursor composite
  • 2.12.2 Pyrolysis of precursor composite
  • 2.12.3 Infiltration of pyrolyzed composite
  • 2.12.4 Sintering of infiltrated composite
  • 2.13 Characterization
  • 2.13.1 Determination of molecular weight
  • 2.13.2 GC analysis
  • 2.13.3 IR spectral studies
  • 2.13.4 NMR spectral studies
  • 2.13.5 Chemical analysis
  • 2.13.6 Elemental analysis
  • 2.13.7 Thermogravimetric analysis
  • 2.14 Mechanical properties11
  • 2.14.1 Tensile properties
  • 2.14.2 Flexural strength
  • 2.14.3 Compressive strength
  • 2.15 Evaluation of oxidation resistance
  • 2.16 X-Ray diffraction studies
  • 2.17 Morphological Studies
  • References
  • 3 Results and Discussion
  • Part A Borosiloxane Oligomers
  • CHAPTER 3.1 Synthesis and characterization of borosiloxane oligomers from alkoxysilanes
  • 3.1.1 Background
  • 3.1.2 Borosiloxane oligomers from PTMOS and PTEOS
  • 3.1.2.1 Comparison of borosiloxane oligomers from PTMOS and PTEOS
  • Scheme 3.1.1. Synthesis of borosiloxane oligomers from phenyltrialkoxysilane
  • Fig. 3.1.1. GPC curves of BSiPh-1 and BSiPh-2
  • Fig. 3.1.2. IR spectra of BSiPh-1 and BSiPh-2
  • Fig. 3.1.3. 1H-NMR spectra of BSiPh-1 and BSiPh-2
  • Fig. 3.1.4. 13C-NMR spectra of BSiPh-1 and BSiPh-2
  • Fig. 3.1.5. 29Si-NMR spectra of BSiPh-1 and BSiPh-2
  • Fig. 3.1.6. Possible structural units present in BSiPh-1 and BSiPh-2
  • Scheme 3.1.2. Possible reactions taking place in the reaction medium
  • Fig. 3.1.8. TG curves of BSiPh-1 and BSiPh-2
  • Table 3.1.2. Comparison of thermal properties of borosiloxane oligomers fromboric acid and PTMOS/PTEOS
  • Fig. 3.1.9. Pyrograms of BSiPh-1 and BSiPh-2
  • 3.1.2.2. Effect of monomer feed ratio on the properties of borosiloxaneoligomers from PTEOS
  • Fig. 3.1.10. GPC curves of BSiPh-2, BSiPh-3 and BSiPh-4
  • Fig. 3.1.11. 1H-NMR spectrum of BSiPh-4
  • Fig. 3.1.12. 29Si-NMR spectrum of BSiPh-4
  • Fig. 3.1.13. TG curves of BSiPh-2, BSiPh-3 and BSiPh-4
  • Table 3.1.4. Comparison of thermal properties of borosiloxane oligomers
  • 3.1.2.3 Effect of reaction time on the properties of borosiloxane oligomerfrom PTEOS
  • Fig. 3.1.14. GPC curves of BSiPh-2 and BSiPh-5
  • Fig. 3.1.15. 29Si-NMR spectrum of BSiPh-5
  • Fig. 3.1.16. TGA curves of BSiPh-2 and BSiPh-5
  • 3.1.3 Synthesis of borosiloxane oligomers from VTEOS
  • Scheme. 3.1.3. Synthesis of borosiloxane oligomers from VTEOS
  • Fig. 3.1.17. IR spectrum of BSiVi-1
  • Fig. 3.1.18. TG curves of BSiVi-1, BSiVi-2 and BSiVi-3
  • Fig. 3.1.19. Pyrogram of BSiVi-1
  • 3.1.4 Synthesis of borosiloxane oligomers from mixtures of alkoxysilanes
  • 3.1.4.1 Borosiloxane oligomers from PTEOS and VTEOS mixture
  • Scheme 3.1.4. Synthesis of borosiloxane oligomer fromVTEOS and PTEOS mixture
  • Fig. 3.1.20. IR spectrum of BSiPhVi-1
  • Fig. 3.1.21. Pyrograms of BSiPhVi-1, BSiPhVi-2 and BSiPhVi-3
  • Fig. 3.1.22. TG curves of BSiPhVi-1, BSiPhVi-2 and BSiPhVi-3
  • 3.1.4.2 Borosiloxane oligomers from PTMOS and VTEOS mixture
  • Fig. 3.1.23. GPC curve of BSiPhVi-4
  • Fig. 3.1.24. 1H-NMR spectrum of BSiPhVi-4
  • Fig. 3.1.25. 13C-NMR spectrum of BSiPhVi-4
  • Fig. 3.1.26. 29Si-NMR spectrum of BSiPhVi-4
  • Fig. 3.1.27. Pyrogram of BSiPhVi-4
  • Fig. 3.1.28. TG curves of BSiPhVi-4, BSiPhVi-5 and BSiPhVi-6
  • Fig. 3.1.29. 29Si-NMR spectrum of BSiPhVi-7
  • Fig. 3.1.30. TG curves of BSiPhVi-4, BSiPhVi-7 and BSiPhVi-8
  • 3.1.5 Synthesis of borosiloxane oligomers from TEOS
  • 3.1.5.1 Effect of mole ratio of boric acid to TEOS
  • Fig. 3.1.31. IR spectra of BSiT-1, BSiT-2 and BSiT-3
  • Fig. 3.1.32. TG curves of BSiT-1, BSiT-2 and BSiT-3
  • 3.1.6 Synthesis of borosiloxane oligomers without using catalyst
  • 3.1.6.1 Borosiloxane oligomers from PTMOS and PTEOS
  • Fig. 3.1.33. GPC curves of BSiPh-6 and BSiPh-7
  • Fig. 3.1.34. 29Si-NMR spectra of BSiPh-6 and BSiPh-7
  • Fig. 3.1.35. 29Si-NMR spectrum of BSiPh-8
  • Fig. 3.1.36. TG curves of BSiPh-7 and BSiPh-8
  • 3.1.6.2 Borosiloxane oligomers from boric acid and TEOS
  • Fig. 3.1.37. IR spectra of BSiT-2 and BSiT-4
  • Fig. 3.1.38. TG curves of a) BSiT-2 and b) BSiT-4
  • 3.1.7 Conclusions
  • References
  • CHAPTER 3.2 Synthesis of epoxy functionalized borosiloxane oligomers
  • 3.2.1 Background
  • 3.2.2 Epoxy-functionalized borosiloxane oligomers
  • 3.2.2.1 Effect of solvents
  • Fig. 3.2.1. GC of the distillate obtained during the synthesis of BSiEp-1
  • Scheme 3.2.1. Synthesis of epoxy-functionalized borosiloxane oligomer
  • Scheme 3.2.2. Possible reaction of epoxy group with B-OH group
  • Fig. 3.2.2. IR spectra of crosslinked BSiEp-1 and BSiEp-2
  • 3.2.2.2 Effect of mole ratio of boric acid to GPTMOS
  • Fig. 3.2.3. GPC curves of BSiEp-3A and BSiEp-3B
  • Fig. 3.2.4. TG curves of a) BSiEp-1, b) BSiEp-4A and c) BSiEp-4B
  • Fig. 3.2.5. 1H-NMR spectra BSiEp-3A and BSiEp-3B
  • Fig. 3.2.6. 13C-NMR spectra of BSiEp-3A and BSiEp-3B
  • Table 3.2.2. 1H- and 13C-NMR spectral assignments of BSiEp oligomer
  • Fig. 3.2.7. 29Si-NMR spectra of BSiEp-3A and BSiEp-3B
  • 3.2.3 Epoxy and vinyl-functionalized borosiloxane oligomers
  • 3.2.3.1 Effect of solvent on the reaction of boric acid, GPTMOS and VTEOS
  • Scheme 3.2.3. Synthesis of vinyl and epoxy functionalized borosiloxane oligomer
  • Fig. 3.2.9. GPC curve of BSiEpVi -2
  • Fig. 3.2.10. IR spectrum of BSiEpVi -1
  • Fig. 3.2.11. 1H-NMR spectrum of BSiEpVi -2
  • Fig. 3.2.12. 13C-NMR spectrum of BSiEpVi -2
  • Table 3.2.3. 1H- and 13C-NMR spectral assignments of BSiEpVi -2 oligomer
  • Fig. 3.2.13. 29Si-NMR spectrum of BSiEpVi -2
  • 3.2.3.2 Effect of mole ratio on the reaction of boric acid, GPTMOS andVTEOS
  • Fig. 3.2.14. GPC curve of BSiEpVi-4
  • Fig. 3.2.15. 29Si-NMR spectrum of BSiEpVi-4
  • Fig. 3.2.16. TG curves of BSiEp-1and BSiEpVi-3
  • 3.2.4 Conclusions
  • References
  • CHAPTER 3.3 Solventless synthesis of borosiloxane oligomers
  • 3.3.1 Background
  • 3.3.2 Solventless synthesis of borosiloxane oligomers from phenyltrialkoxysilanesin the presence of catalyst
  • Fig. 3.3.1. GPC curves of BSiPh-9 and BSiPh-10
  • Fig. 3.3.2. 1H-NMR spectra of BSiPh-9 and BSiPh-10
  • Fig. 3.3.3. 29Si-NMR spectra of BSiPh-9 and BSiPh-10
  • Fig. 3.3.4. TG curves of BSiPh-9 and BSiPh-10
  • 3.3.3 Solventless synthesis of borosiloxane oligomers in the absence of catalyst from different alkoxysilanes
  • 3.3.3.1 Borosiloxane oligomer from PTMOS
  • Fig. 3.3.5. GPC curve of BSiPh-12
  • Fig. 3.3.6. IR spectrum of BSiPh-12
  • Fig.3.3.7.1H-NMR spectrum of BSiPh-12
  • Fig.3.3.8. 29Si-NMR spectrum of BSiPh-12
  • 3.3.3.2 Borosiloxane oligomer from PTEOS
  • Fig. 3.3.9. GPC curve of BSiPh-15
  • Fig. 3.3.10. 1H-NMR spectrum of BSiPh-15
  • Fig. 3.3.11. 13C-NMR spectrum of BSiPh-15
  • Fig. 3.3.12. 29Si-NMR spectrum of BSiPh-15
  • Scheme 3.3.1. Modification of polyimide film with borosiloxane oligomer
  • Fig. 3.3.13. TG curves of unmodified and borosiloxane oligomer modified polyimide films
  • 3.3.3.3 Borosiloxane oligomer from VTEOS
  • Fig. 3.3.14. GPC curve of BSiVi-7
  • Fig. 3.3.15. 1H-NMR spectrum of BSiVi-7
  • Fig. 3.3.16. 13C-NMR spectrum of BSiVi-7
  • Fig. 3.3.17. 29Si-NMR spectrum of BSiVi-7
  • 3.3.3.4 Borosiloxane oligomer from GPTMOS
  • Fig. 3.3.18. GPC curve of BSiEp-6
  • Fig. 3.3.19. 29Si- NMR spectrum of BSiEp-6
  • Fig. 3.3.20. IR spectra of BSiEp a) before b) after gelation
  • 3.3.3.5 Borosiloxane oligomer from GPTMOS and VTEOS
  • Fig. 3.3.21. GPC curve of BSiEpVi-5
  • Fig. 3.3.22. 29 Si-NMR spectrum of BSiEpVi-5
  • Fig. 3.3.23. TGA curves of the cured and uncured BSiEpVi-5
  • 3.3.4 Conclusions
  • References
  • CHAPTER 3.4 Ceramic conversion studies ofborosiloxane oligomers
  • 3.4.1 Background
  • Scheme 3.4.1. Flow chart for conversion of preceramicoligomers to ceramics
  • 3.4.2 Ceramic conversion studies of borosiloxane oligomers
  • 3.4.3 Ceramic conversion studies of decaborane (14) -based oligomerwith high boron content
  • Scheme 3.4.2. Reaction scheme for the formation of crosslinkedoligomer (BSiDB-1) from decaborane (14), boric acid and APMDEOS
  • Fig. 3.4.11. IR spectrum of BSiDB-1
  • Fig. 3.4.12. TGA curve of BSiDB-1
  • 3.4.4 Conclusions
  • References
  • CHAPTER 3.5 End uses of borosiloxane oligomers
  • 3.5.1 Background
  • 3.5.2 Oxidation resistant coating for C-C composites
  • 3.5.2.1 Preparation of SiC coating
  • Scheme 3.5.1. Curing of addition-curable phenolic resin
  • Scheme 3.5.2. Flow chart for the preparation of oxidation resistantSiC coating on C-C composite
  • 3.5.2.2 Evaluation of oxidation resistance of SiC coated C-C composite
  • Fig. 3.5.5. SEM of a) C-C composite and b) SiC coated C-C composite beforeexposure to oxidizing environment
  • Fig. 3.5.6. SEM of a) C-C composite and b) SiC coated C-C after exposure tooxidizing environment
  • Fig. 3.5.7. SEM of SiC coated C-C composite exposedto oxidizing environment (Two views)
  • 3.5.3 Glass coating from borosiloxane oligomers
  • Fig. 3.5.8. SEM of glass coating from BSiT-2
  • Fig. 3.5.9 SEM of glass coating fromBSiT-2 exposed to air at1000° C for 50 min
  • Fig. 3.5.10 SEM of unprotected graphitesurface exposed to air at1000° C for 50 min
  • 3.5.4 Ceramic matrix composites
  • Scheme 3.5.3. Flow chart showing the preparation of CMC
  • 3.5.5 Mechanical properties of CMCs prepared using rayon-basedcarbon fabric and different precursor compositions
  • Fig. 3.5.11. SEM of a) CMC-5 and b) CMC-6 after mechanical al testing
  • Fig. 3.5.12. SEM of fractured surface of CMC-10 test coupon
  • 3.5.6 Conclusions
  • References
  • Part B Polysilahydrocarbons
  • CHAPTER 3.6Thermal degradation kinetics ofpolysilahydrocarbons
  • 3.6.1 Background
  • 3.6.2 Kinetic Equations
  • 3.6.2.1 Isothermal kinetics
  • 3.6.2.2 Non-isothermal kinetics
  • 3.6.2.3 Comparison of isothermal and non-isothermal methods
  • 3.6.2.4 Different methods for the determination of kinetic parameters usingnon-isothermal kinetic methods
  • 3.6.3 Poly (dimethylsilylene-co-styrene) and Poly (methylphenylsilyleneco-styrene)
  • 3.6.3.1 Composition of the copolymers
  • 3.6.3.2 Thermal properties
  • Fig. 3.6.1. TG curves of PDMSS copolymers
  • Table 3.6.3. Comparison of thermal properties and ceramic residuefor PDMSS copolymers
  • Fig. 3.6.2. TG curves of PMPSS copolymers
  • Table 3.6.4. Comparison of thermal properties and ceramic residueof PMPSS copolymers
  • 3.6.3.3 Thermal degradation kinetics
  • Fig. 3.6.3. Coats-Redfern kinetic plot for differentvalues of n for PDMSS-II
  • 3.6.4 Poly (methylvinylsilylene-co-styrene)
  • 3.6.4.1 Thermal properties
  • Fig. 3.6.4. TG curves of PMVS (homopolymer) and copolymersPMVSS-I to PMVSS-V
  • Fig. 3.6.5. DTG curves of PMVS, PMVSS-I and PMVSS-II
  • 3.6.4.2 Thermal degradation kinetics
  • Table 3.6.12. Kinetic parameters for the thermal degradation ofPMVS and copolymers
  • 3.6.5 Polycarbosilanes from polysilahydrocarbons
  • 3.6.5.1 Thermal properties of polycarbosilanes obtained by heat treatmentof PSH-I and PSH-II
  • Fig. 3.6.6. TG curves of PSH-I and the polycarbosilanes obtained by heat treatment
  • Fig. 3.6.7. TG curves of PSH-II and the polycarbosilanesobtained by heat treatment
  • 3.6.5.2 Thermal degradation kinetics
  • 3.6.6 Conclusions
  • References
  • Table 3.6.1. Composition and GPC data of the PDMSS copolymers
  • Table 3.6.2. Composition and GPC data of the PMPSS copolymers
  • CHAPTER 3.7Polysilahydrocarbons asatomic oxygen resistant coatings
  • 3.7.1 Background
  • Fig. 3.7.1. Atmospheric composition as a function of altitude
  • 3.7.2 Poly (tetramethyldisilylene-co-styrene) (PTMDSS) as AO resistantcoating
  • 3.7.2.1 Synthesis of PTMDSS
  • Fig. 3.7.2. 29Si-NMR spectrum of PTMDSS
  • Fig. 3.7.3. 13C-NMR spectrum of PTMDSS
  • 3.7.2.2 AO exposure studies
  • Fig. 3.7.6. SEM of (a) uncoated aluminized Kapton® film and (b) PTMDSS-coated aluminized Kapton® film exposed to AO (a) (b)
  • Fig. 3.7.8. SEM of (a) uncoated C-polyimide composite (b) PTMDSS-coated C-polyimide composite exposed to AO (a) (b)
  • Fig. 3.7.9. SEM of a defect site of PTMDSS-coated C-polyimidecomposite exposed to AO
  • Fig. 3.7.11. SEM of a) uncoated and b) PTMDSS-coatedglass-polyimide composite exposed to AO
  • 3.7.3 Poly (methylphenylsilylene-co-styrene) (PMPSS) as AO resistantcoating
  • 3.7.3.1 Synthesis of PMPSS
  • Fig. 3.7.12. 29Si-NMR spectrum of PMPSS
  • 3.7.3.2 AO exposure studies
  • Fig. 3.7.14. SEM of PMPSS-coatedaluminized Kapton® film exposed to AO
  • Fig. 3.7.15. SEM of PMPSS-coated C-polyimide composite exposed to AO
  • Fig. 3.7.16. SEM images of PMPSS-coated glass-polyimide compositeexposed to AO
  • 3.7.4 Poly (dimethylsilylene-co-methylphenylsilylene-co-styrene) (PSH-TER) as AO resistant coating
  • 3.7.4.1 Synthesis of PSH-TER
  • 3.7.4.2 AO exposure studies
  • Fig. 3.7.17. Comparison of mass loss of different polysilahydrocarbons on exposure to AO
  • Fig. 3.7.18. Comparison of mass loss of substrates coated with different polysilahydrocarbons on exposure to AO
  • 3.7.5 Comparison of AO resistance of PSH-TER with other AO resistant materials
  • Fig. 3.7.19. Structure of siloxane-imide-epoxy resin (SIE)
  • Fig. 3.7.20. Structure of phosphazene based polymer (PZ-BMM)
  • Fig. 3.7.21. Structure of phosphazene-triazine based polymers (PZ-TZ-BMM)
  • Fig. 3.7.22. Structure of vinylic phosphazene based polymer (VCP-1)
  • 3.7.6 Conclusions
  • References
  • 4 Summary and Conclusions
  • Summary and Conclusions
  • Publications
  • Publications (Journals / International and National Conferences)
  • Patents