• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 355
 
Full Screen

  • Title
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • Preface
  • Symbols and abbreviations
  • 1 Introduction
  • 1.1 Structure and stability of latex
  • 1.2 Classification of latices
  • 1.2.1 Natural rubber latex
  • 1.2.2 Synthetic latices
  • 1.2.3 Artificial latices
  • 1.2.4 Chemically modified latices
  • 1.3 Compounding of latex
  • 1.3.1 Vulcanising agents
  • 1.3.2 Accelerators
  • 1.3.3 Antioxidants
  • 1.3.4 Fillers and pigments
  • 1.3.5 Surface-active agents and thickeners
  • 1.3.6 Plasticisers
  • 1.3.7 Special additives
  • 1.4 Latex processing
  • 1.5 Blending of latices
  • 1.6 Film formation
  • 1.7 Prevulcanisation of latices
  • 1.7.1 Sulphur prevulcanisation
  • 1.7.2 Peroxide prevulcanisation
  • 1.7.3 Radiation prevulcanisation
  • 1.8 Rheology of latices
  • 1.9 Microcomposites
  • 1.9.1 Latex microcomposites
  • 1.10 Nanocomposites
  • 1.10.1 Polymer layered silicate nanocomposites (PLSNs)
  • 1.10.2 Structure and properties of layered silicates
  • 1.10.3 Organically modified silicates (OLS)
  • 1.10.4 Classification of PLSNs
  • 1.10.5 Preparation of PLSNs
  • 1.10.6 Characterisation of PLSNs
  • 1.10.6.1 X-ray Diffraction technique (XRD)
  • 1.10.6.2 Transmission electron microscopy (TEM)
  • 1.10.6.3 Differential scanning calorimetry (DSC)
  • 1.10.6.4 Dynamic mechanical thermal analysis (DMTA)
  • 1.10.7 Properties of PLSNs
  • 1.10.7.1 Mechanical properties
  • 1.10.7.2 Dynamic mechanical properties
  • 1.10.7.3 Transport properties
  • 1.10.7.4 Thermal stability
  • 1.10.7.5 Rheological behaviour
  • 1.10.8 Latex nanocomposites
  • 1.11 Motivation for the study
  • 1.12 Objectives of the work
  • 1.13 References
  • 2 Experimental
  • 2.1 Materials
  • 2.1.1 Natural rubber (NR) latex
  • 2.1.2 Carboxylated styrene butadiene rubber (XSBR) latex
  • 2.1.3 Compounding ingredients
  • 2.1.3.1 Vulcanising agent
  • 2.1.3.2 Accelerators
  • 2.1.3.3 Fillers
  • 2.1.3.4 Surface-active agents
  • 2.2 Preparation of dispersions
  • 2.3 Sample preparation
  • 2.3.1 Blending of latices
  • 2.3.2 Sulphur prevulcanisation of latex
  • 2.3.3 Preparation of microcomposites
  • 2.3.4 Preparation of nanocomposites
  • 2.4 Characterisation techniques and property analyses
  • 2.4.1 X-ray diffraction (XRD)
  • 2.4.2 Transmission electron microscopy (TEM)
  • 2.4.3 Positron annihilation lifetime spectroscopy (PALS)
  • 2.4.4 Scanning electron microscopy (SEM)
  • 2.4.5 UV- Visible spectroscopy
  • 2.4.6 Fourier transform infra red spectroscopy (FTIR)
  • 2.4.7 X-ray photoelectron spectroscopy (XPS)
  • 2.4.8 Dynamic mechanical thermal analysis (DMTA)
  • 2.4.9 Dielectric measurements
  • 2.4.10 Mechanical properties
  • 2.4.11 Cross link density measurements
  • 2.4.12 Rheological measurements
  • 2.4.13 Gas permeation analysis
  • 2.4.14 Diffusion experiments
  • 2.4.15 Thermo gravimetric analysis (TGA)
  • 2.4.16 Ageing studies
  • 2.4.17 Ion- beam irradiation of latex Films
  • 2.5 References
  • 3 Morphology, dynamic mechanical and mechanical properties latex blends
  • 3.1 Introduction
  • 3.2 Results and discussion
  • 3.2.1 Morphology of blends
  • 3.2.2 Dynamic mechanical properties
  • 3.2.3 Time- temperature superposition
  • 3.2.4 Theoretical modeling of dynamic mechanical properties
  • 3.2.5 Mechanical properties
  • 3.2.6 Cross link density
  • 3.2.7 Theoretical modeling of mechanical properties
  • 3.3 Conclusion
  • 3.4 References
  • 4 Mechanical and dynamic mechanical properties of microcomposites
  • 4.1 Introduction
  • 4.2 Results and discussion
  • 4.2.1 Mechanical properties
  • 4.2.2 Crosslink density
  • 4.2.3 Estimation of degree of reinforcement
  • 4.2.4 Tensile fracture surface analysis
  • 4.2.5 Dynamic mechanical properties
  • 4.2.6 Theoretical modeling of mechanical and viscoelastic properties
  • 4.3 Conclusion
  • 4.4 References
  • 5 Mechanical properties of nanocomposites
  • 5.1 Introduction
  • 5.2 Results and discussion
  • 5.2.1 Characterisation
  • 5.2.2 Morphology
  • 5.2.3 Mechanical properties
  • 5.2.4 Estimation of degree of reinforcement
  • 5.2.5 Crosslink density
  • 5.2.6 Theoretical modeling of elastic modulus
  • 5.3 Conclusion
  • 5.4 References
  • 6 Dynamic mechanical and dielectric properties of nanocomposites
  • 6.1 Introduction
  • 6.2 Results and discussion
  • 6.2.1 Dynamic mechanical properties
  • 6.2.2 Theoretical modeling of viscoelastic properties
  • 6.2.3 Dielectric properties
  • 6.3 Conclusion
  • 6.4 References
  • 7 Gas transport through nano and micro composite membranes
  • 7.1 Introduction
  • 7.2 Results and discussion
  • 7.2.1 Free volume measurements
  • 7.2.2 Permeation of gases
  • 7.2.3 Selectivity of membranes
  • 7.2.4 Barrier property
  • 7.3 Conclusion
  • 7.4 References
  • 8 Rheological behaviour of nanocomposites
  • 8.1 Introduction
  • 8.2 Results and discussion
  • 8.2.1 Effect of shear rate and filler loading
  • 8.2.2 Effect of temperature
  • 8.2.3 Activation energy
  • 8.2.4 Zero shear viscosity
  • 8.2.5 Pseudoplasticity and yield stress
  • 8.3 Conclusion
  • 8.4 References
  • 9 Diffusion and transport of liquids through micro and nano composites
  • 9.1 Introduction
  • 9.2 Results and discussion
  • 9.2.1 Latex microcomposites
  • 9.2.1.1 Swelling behaviour
  • 9.2.1.2 Diffusion coefficient and activation energy
  • 9.2.1.3 Transport mechanism
  • 9.2.1.4 Determination of thermodynamic parameters
  • 9.2.1.5 Molecular weight between the cross links
  • 9.2.2 Latex nanocomposites
  • 9.2.2.1 Swelling behaviour
  • 9.2.2.2 Diffusion coefficient and activation energy
  • 9.2.2.3 Transport mechanism
  • 9.2.2.4 Determination of thermodynamic is parameters
  • 9.2.2.5 Molecular weight between the cross links
  • 9.3 Conclusion
  • 9.4 References
  • 10 Thermal stability and ageing properties of micro and nano composites
  • 10.1 Introduction
  • 10.2 Results and discussion
  • 10.2.1 Latex micro composites
  • 10.2.1.1 Thermo gravimetric analysis
  • 10.2.1.2 Activation energy for degradation
  • 10.2.1.3 Thermal ageing resistance
  • 10.2.2 Latex nanocomposites
  • 10.2.2.1 Thermal degradation analysis
  • 10.2.2.2 Activation energy for thermal degradation
  • 10.2.2.3 Thermal ageing resistance
  • 10.3 Conclusion
  • 10.4 References
  • 11 Ion-beam irradiation of latices
  • 11.1 Introduction
  • 11.2 Results and discussion
  • 11.2.1 Effect of ion- beam irradiation on late blends
  • 11.2.1.1 UV / Visible spectroscopic analysis
  • 11.2.1.2 Fourier transform infrared analysis
  • 11.2.1.3 Scanning electron microscopic analysis
  • 11.2.1.4 Crosslink density
  • 11.2.2 Effect of ion- beam irradiation on Latex micro composites
  • 11.2.2.1 X-ray photoelectron spectroscopic analysis
  • 11.2.2.2 Crosslink density
  • 11.2.3 Effect of ion- beam irradiation on latex nanocomposite
  • 11.2.3.1 Dielectric properties
  • 11.3 Conclusion