• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 390
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE-1
  • CERTIFICATE-2
  • DECLARATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • GLOSSARY
  • PREFACE
  • PART I - INTRODUCTION
  • 1. Introduction
  • 1.1.1 Composites
  • Fig.1.1.1 Classification of composites
  • 1.1.2 Biofibres / Lignocellulosic Fibres / Natural Fibres
  • Fig.1.1.2 Structure of biofibre
  • Table 1.1.18 List of important biofibres
  • 1.1.2.1 Biofibres: Advantages & Disadvantages
  • 1.1.3. Biocomposites
  • Fig.1.1.3 Fibre reinforced plastic composites
  • 1.1.3.1 Classification of Biocomposites
  • 1.1.3.1.1 Green Composites
  • Fig.1.1.4 (a & b) SEM photomicrographs of the fracture tensile surfacesof untreated and treated composites
  • 1.1.3.1.2 Hybrid Biocomposites
  • 1.1.3.1.3 Textile Biocomposites
  • 1.1.3.2 Applications of Biocomposites
  • 1.1.3.3 Designing Biocomposites
  • 1.1.4. Electrospinning (ELSP)
  • Fig. 1.1.7 [Reference: Kidoaki et at. Biornaterials 26, 37, 2005
  • 1.1.5. Cellulose Based Nanocomposites
  • Fig.1.1.8 Model of the cellulose microfibril structure
  • 1.1.6. Interface
  • 1.1.6.1 Characterization Techniques
  • 1.1.6.1.1 Micro mechanical Techniques
  • 1.1.7. Natural Rubber [NR}
  • 1.1.7.1 Grades and Grading
  • 1.1.7.2 Modifications of Natural Rubber
  • 1.1.8 Short Fibre Reinforced Rubber Composites
  • 1.1.8.1 Theory of Reinforcement
  • 1.1.8.2 Factors Affecting Reinforcement
  • 1.1.8.3. Biofibre Reinforced Natural Rubber Composites
  • 1.1.8.4 Biofibre / Natural Rubber Adhesion
  • 1.1.9. Processing
  • 1.1.10. Applications of Fibre Reinforced Rubber Composites
  • 1.1.11 Importance of the Work
  • 1.1.11.1 Sisal and Oil Palm Fibres
  • 1.1.11.2. Scope of The Present Work
  • 1.1.12 Major Objectives
  • References
  • 2. Experimental
  • 1.2.1 Materials
  • 1.2.2 Fiber Preparation
  • 1.2.3 Chemical modification of sisal, oil palm fibres and sisal fabric
  • 1.2.3.1 Alkali treatment
  • 1.2.3.2 Silane treatment
  • 1.2.3.3 Thermal treatment
  • 1.2.4 Spectroscopic Techniques
  • 1.2.5 Preparation of hybrid biocomposites and textile biocomposites
  • 1.2.6 Measurement of Properties
  • 1.2.6.1 Scanning electron microscopic studies (SEM)
  • 1.2.6.2 Fiber Breakage Analysis
  • 1.2.6.3 Processing Characteristics
  • 1.2.6.4 Green Strength Measurements
  • 1.2.6.5 Mechanical Property Measurements
  • 1.2.6.6 Swelling Studies
  • 1.2.6.6.1 Anisotropic swelling
  • 1.2.6.6.2 Equilibrium swelling studies
  • 1.2.6.7 Hardness and Abrasion Resistance Studies
  • 1.2.6.8 Dynamic Mechanical Analysis
  • 1.2.6.9 Thermogravimetric Studies
  • 1.2.6.10 Water Sorption Experiments
  • 1.2.6.11 Solvent Sorption Measurements
  • 1.2.6.12 Ageing and Bio-degradation Studies
  • 1.2.6.13 Dielectric Measurements
  • 1.2.6.14 Stress Relaxation Experiments
  • References
  • PART II -HYBRID BIOCOMPOSITES
  • 1. Mechanical Properties of Short Sisal / Oil Palm Hybrid Biofibre Reinforced Natural Rubber Biocomposites
  • 2.1.1 Introduction
  • 2.1.2 Results and Discussion
  • 2.1.2.1 Evaluation of Fiber Breakage
  • Table 2.1.1. Fibre Length Distribution Index
  • 2.1.2.2 Processing Characteristics
  • 2.1.2.2.1 Effect of fiber loading
  • 2.1.2.2.2 Effect of fiber ratio
  • Fig. 2.1.4 Rheographs of mixes
  • 2.1.2.3 Mechanical Properties
  • 2.1.2.3.1 Effect of Fiber Length
  • 2.1.2.3.2 Effect of Fiber Loading
  • 2.1.2.3.3 Effect of Fiber Ratio
  • 2.1.2.4 Green Strength Measurements
  • Fig. 2.1.16 Effect of fibre loading on percentage orientation of fibres
  • 2.1.2.5 Equilibrium Swelling Studies
  • 2.1.2.5.1 Rubber Fiber Interactions
  • 2.1.2.5.2 Swelling index and Cross link density determination
  • 2.1.2.6 Anisotropic Swelling Studies
  • 2.1.2.6.1 Effect of Fiber Loading
  • 2.1.2.6.2 Effect of Fiber Ratio
  • 2.1.2.7. Theoretical modeling
  • 2.1.3 Conclusion
  • References
  • 2. Mechanical Properties of Chemically Modified Short Sisal / Oil Palm Hybrid Biofibre Reinforced Natural Rubber Biocomposites
  • 2.2.1 Introduction
  • 2.2.2 Results and Discussion
  • 2.2.2.1 Processing characteristics
  • 2.2.2.1.1 Effect of bonding agent and chemical modification
  • 2.2.2.2 Mechanical properties
  • 2.2.2.3 IR spectrum of treated fibres
  • 2.2.2.4 Equilibrium swelling studies
  • 2.2.2.4.1 Rubber-Fiber Interactions and Extent of Reinforcement
  • 2.2.2.4.2 Swelling index and Cross link density determination
  • 2.2.2.5 Anisotropic swelling studies
  • 2.2.2.6 Scanning electron microscopic studies
  • 2.2.3 Conclusion
  • References
  • 3. Dynamic Mechanical & Thermal Analyses of Short Sisal / Oil Palm Hybrid Biofibre Reinforced Natural Rubber Biocomposites
  • 2.3.1 Introduction
  • 2.3.2 Results and Discussion
  • 2.3.2.1 Storage Modulus
  • 2.3.2.2 Loss Modulus
  • 2.3.2.3 Mechanical damping factor (tan δ)
  • 2.3.2.4 Effect of chemical modification
  • 2.3.2.4.1 Storage Modulus
  • 2.3.2.4.2 Loss Modulus and tan δ
  • 2.3.2.5 Frequency dependence of hybrid biocomposites
  • 2.3.2.6 Thermal properties
  • 2.3.2.6.1 Kinetics of thermal degradation
  • 2.3.3. Conclusion
  • References
  • 4. Sorption Studies of Short Sisal / Oil Palm Hybrid Biofibre Reinforced Natural Rubber Biocomposites
  • 2.4.1 Introduction
  • 2.4.2 Results and Discussion
  • 2.4.2.1 Moisture uptake in biofibre reinforced composites
  • 2.4.2.2 Fiber loading
  • 2.4.2.3 Chemical modification
  • 2.4.2.4 Kinetic parameters
  • 2.4.2.4.1 Diffusion coefficient
  • 2.4.2.4.2 Sorption Coefficient
  • 2.4.2.4.3 Permeability Coefficient
  • 2.4.2.5 Sorption characteristics of aromatic solvents
  • 2.4.2.5.1 Effect of fiber loading on solvent uptake
  • 2.4.2.5.2 Effect of chemical modification on solvent uptake
  • 2.4.3 Conclusion
  • References
  • 5. Dielectrical Properties of Short Sisal / Oil Palm Hybrid Biofibre Reinforced Natural Rubber Biocomposites
  • 2.5.1 Introduction
  • 2.5.2 Theoretical Background
  • 2.5.3 Results and Discussion
  • 2.5.3.1 Dielectric constant
  • 2.5.3.1.1 Effect of fibre loading and chemical modification
  • 2.5.3.2 Volume Resistivity
  • 2.5.3.2.1 Effect of fibre loading and chemical modification
  • 2.5.3.3 Electrical conductivity
  • 2.5.3.4 Dissipation factor
  • 2.5.4 Conclusion
  • References
  • 6. Stress Relaxation and Biodegradation Studies of Short Sisal / Oil Palm Hybrid Biofibre Reinforced Natural Rubber Biocomposites
  • 2.6.1 Introduction
  • 2.6.2 Results and Discussion
  • 2.6.2.1 Effect of fiber loading
  • 2.6.2.2 Effect of chemical modification and role of interfacial adhesion
  • 2.6.2.3 Effect of strain level
  • 2.6.2.4 Biodeterioration of lignocellulosic fibres
  • 2.6.2.5 Biodegradation of biofibre reinforced rubber composites
  • 2.6.2.6 Ageing
  • 2.6.2.7 Fracture topology of biodegraded samples
  • 2.6.3 Conclusion
  • References
  • PART III - TEXTILE BIOCOMPOSITES
  • 1. Mechanical and Dielectric Analyses of Woven Sisal Fabric Reinforced Natural Rubber Textile Biocomposites
  • 3.1.1 Introduction
  • 3.1.2 Results and Discussion
  • 3.1.2.1 Sisal fabric
  • 3.1.2.2 Chemical modification
  • 3.1.2.3 Swelling index and cross link density determination
  • 3.1.2.4 Dielectric properties
  • 3.1.3 Conclusion
  • References
  • 2. Dynamic Mechanical & Thermal Analyses of Woven Sisal Fabric Reinforced Natural Rubber Textile Biocomposites
  • 3.2.1 Introduction
  • 3.2.2 Results and Discussion
  • 3.2.2.1 Storage Modulus
  • 3.2.2.2 Loss modulus and damping characteristics
  • 3.2.2.3 Frequency dependence of textile composites
  • 3.2.2.4 Thermal properties
  • 3.2.2.5 Kinetics of thermal degradation
  • 3.2.3 Conclusion
  • References
  • 3. Sorption Studies of Woven Sisal Fabric Reinforced Natural Rubber Textile Biocomposites
  • 3.3.1 Introduction
  • 3.3.2 Results and Discussion
  • 3.3.2.1 Moisture uptake in textile biocomposites
  • 3.3.2.2 Kinetic parameters
  • 3.3.2.2.1 Diffusion coefficient
  • 3.3.2.2.2 Sorption coefficient
  • 3.3.2.2.3 Permeability coefficient
  • 3.3.2.3 Solvent uptake in textile biocomposites
  • 3.3.3 Conclusion
  • References
  • PART IV - CONCLUSION
  • 1. Conclusions and Future Outlook
  • 4.1 Conclusions
  • 4.2 Future Work
  • CURRICULUM VITAE OF MRS. MAYA JACOB
  • PAPERS PRESENTED/ ACCEPTED IN CONFERENCES