• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 268
 
Full Screen

  • Title
  • DEDICATION
  • CERTIFICATE 1
  • CERTIFICATE-2
  • CERTIFICATE 3
  • DECLARATION
  • ACKNOWLEDGEMENT
  • List of Notations and Abbreviations
  • CONTENTS
  • Preface
  • 1. Introduction
  • 1.1. Blending techniques
  • 1.1.1 Mechanical blend
  • 1.1.2 Mechanochemical blends
  • 1.1.3 Chemical blends
  • 1.1.4 Solution cast blends
  • 1.1.5 Latex blends
  • 1.2. Compatibility of polymer mixtures
  • 1.3. Properties of polymer blends
  • 1.3.1 Physical properties
  • 1.3.2 Glass transition behaviour
  • 1.3.3 Morphology
  • 1.4. Cross linking of polymer blends
  • 1.5. History of IPN development
  • 1.6. Relationships among blends, grafts and IPNs
  • 1.7. Mode of IPN synthesis
  • 1.8. Properties of IPNs
  • 1.8.1 Physical and mechanical behaviour
  • 1.8.2 Glass transition and viscoelastic behaviour
  • 1.8.3 Ultimate behaviour
  • 1.8.4 Morphology
  • 1.8.5 Phase continuity in IPNs
  • 1.9. Applications of IPN materials
  • 1.10. Objectives of the present work
  • 1.11. References
  • 2. Materials and Methods
  • 2.1. Materials
  • 2.2. Studies on the diffusion of styrene monomer through natural rubber
  • 2.3. Preparation of interpenetrating polymer networks
  • 2.4. Characterisation of IPNs
  • 2.4.1 Mechanical properties
  • 2.4.2 Phase morphology
  • 2.4.3 Fractography
  • 2.4.4 Crosslink density
  • 2.4.5 Dynamic mechanical analysis
  • 2.4.6 Thermal studies
  • 2.4.7 Swelling studies
  • 2.4.8 Electrical properties
  • 2.5. References
  • 3. Transport of Styrene Monomer through Vulcanised Natural Rubber
  • 3.1 Introduction
  • 3.2 Results and discussion
  • 3.2.1 Effect of cure system, crosslink density, cure time and temperature
  • 3.2.2 Mechanism of diffusion
  • 3.2.3 Diffusion, sorption and permeation
  • 3.2.4 Activation energy and thermodynamic parameters
  • 3.2.5 Theoretical fitting
  • 3.3 References
  • 4. Effect of Blend Ratio, Crosslink Density and Initiating System on Phase Morphology and Mechanical Properties of IPNs
  • 4.1 Introduction
  • 4.2 Results and discussion
  • 4.2.1 Phase morphology
  • 4.2.2 Gel content and crosslink density
  • 4.2.3 Properties of semi-IPNs
  • 4.2.4 Properties of full-IPNs
  • 4.2.5 Model fitting
  • 4.2.6 Izod impact behaviour
  • 4.3 References
  • 5. Viscoelastic Behaviour of Natural Rubber/ Polystyrene Interpenetrating Polymer Networks
  • 5.1 Introduction
  • 5.2 Results and discussion
  • 5.2.1 Effect of blend ratio, cross linking, initiating system, temperature and frequency on viscoelastic properties
  • 5.2.2 Modelling of viscoelastic behaviour
  • 5.2.3 Cole-Cole analysis
  • 5.3 References
  • 6. Thermal Studies of Natural Rubber/ Polystyrene Interpenetrating Polymer Networks
  • 6.1. Introduction
  • 6.2. Results and discussion
  • 6.2.1 Effect of blend ratio, cross linking level and initiating system on thermal degradation
  • 6.2.2 Kinetic parameters from thermal degradation
  • 6.2.3 Ageing of IPNs
  • 6.3. References
  • 7. Swelling Behaviour of Natural Rubber/ Polystyrene (NR / PS) Interpenetrating Polymer Networks in Various Organic Solvents and Oils
  • 7.1 Introduction
  • 7.2 Results and discussion
  • 7.2.1 Effect of penetrant size, blend ratio, cross linker content, temperature and initiating system on swelling
  • 7.2.2 Mechanism of diffusion
  • 7.2.3 Diffusion, sorption and permeation coefficient
  • 7.2.4 The temperature dependence of transport phenomenon
  • 7.2.5 Theoretical fitting
  • 7.2.6 Solvent resistance of interpenetrating polymer networks
  • 7.2.7 Effect of swelling on mechanical properties
  • 7.3 References
  • 8. Electrical Properties of Interpenetrating Polymer Networks Based on Natural Rubber) Polystyrene
  • 8.1. Introduction
  • 8.2. Results and discussion
  • 8.2.1 Volume resistivity and conductivity
  • 8.2.2 Dielectric constant, loss factor and dissipation factor
  • 8.2.3 Comparison with theory
  • 8.3. References
  • 9. Conclusion and Future Prospects
  • APPENDICES