• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 165
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • ABBREVIATIONS
  • CONTENTS
  • 1 SOLID PHASE PEPTIDE SYNTHESIS
  • 1.1 Basic principle of Merrifields solid phase peptide synthesis
  • 1.2 The support for SPPS
  • 1.3 Advantages & Disadvantages of SPPS
  • 1.3.1 Advantages
  • 1.3.2 Disadvantages
  • 1.4 Organisation of the thesis
  • 1.5 Present work
  • 2 PEPTIDOMIMETICS
  • 2.1 Preparation of peptidomimetics
  • 2.1.1 Modification of the amino acid units
  • 2.1.2 Modification of the peptide bond
  • 2.1.2.1 Replacement of amide bond by ketomethylene group carbapeptides
  • 2.1.2.2 Replacement of a-CH group by a nitrogen atom- Azapeptides
  • 2.1.2.3 Replacement of amide bond by 1, 5 disubstituted tetrazole ring
  • 2.1.2.4 Replacement of amide bond by C=C
  • 2.1.2.5 Replacement of amide bond by-CH2-NH
  • 2.1.3 Retro-inverso modifications
  • 2.1.4 Dipeptides with cis-configuration (cis-amide mimetics)
  • 2.1.5 Vinylogous peptides
  • 2.1.6 Introduction of conformation-stabilizing rings (Bridging)
  • 2 1.6.1 Bridging within a single amino acid residue
  • 2 1.6.2 Dipeptide analogues
  • 2.1.6.2.1 Incorporation of lactams
  • 2.l.6.2.2 Incorporation of piperazinone
  • 2.1.6.2.3 Incorporation of y-lactams
  • 2.1.7 Imitation of secondary structures
  • 2.1.8 Scaffold peptidomimetics
  • 2.1.9 Non-peptide mimetics
  • 2.1.10 Peptoids
  • 2.2 Peptidomimetics of somatostatin
  • 2.2.1 Analogues of somatostatin
  • 2.2.1.1 D-Phe-Octreotide
  • 2.2.1.2 Tyr3-Octreotide
  • 2.2.1.3 Vapreotide
  • 2.2.1.4 Cyclo (Pro-Phe-D-Trp-Lys-Thr-Phe)
  • 2.2.1.5 Cyclo (N-Me-Ala-Tyr-D-Trp-Lys-Val-Phe)
  • 2.2.1.6 Cyclo (Aha-Cys-Phe-D-Trp-Lys-Thr-Cys)
  • 3 EXPERIMENTAL
  • 3.1 Preparation and functionalisation of polymer support
  • 3.1.1 Materials and methods
  • 3.1.2 Source of chemicals
  • 3.1.3 Polymer synthesis
  • 3.1.3.1 Preparation of polystyrene cross linked with 2% HDODA by suspension polymerization
  • 3.1.3.2 Chloromethylation of PS-HDODA resin using chloromethyl methyl ether
  • a. Preparation of IM anhydrous ZnCl2 in THF
  • b. Determination of chlorine capacity by pyridine fusion method
  • 3.2 Synthesis of peptides
  • 3.2.1 Source of chemicals
  • 3.2.2 Physical measurements
  • 3.2.3 Purification of reagents and solvents
  • 3.2.4 Identification of the peptides using tic
  • 3.2.5 Protection of side chain functions of aminoacids
  • 3.2.5.1 Blocking the sulfhydryl group of cysteine
  • 3.2.5.2 Protection of s-amino group of lysine
  • 3.2.5.3 Protection of hydroxyl group of threonine
  • 3.2.5.4 Blocking the hydroxyl group of tyrosine
  • 3.2.5.5 Protection of indol nitrogen in tryptophan
  • 3.2.6 Preparation of Boc-amino acids
  • 3.2.7 Procedure for solid phase peptide synthesis
  • 3.2.7.1 Attachment of first aminoacid to the resin: Gisins cesium salt method
  • 3.2.7.2 Estimation of amino groups by picric acid method
  • 3.2.7.3 Deprotection procedure: Removal of Boc group
  • 3.2.7.4 Activation and coupling
  • 3.2.7.5 Cleavage of the peptide from the resin
  • 3.2.8 Hydrogenation of the peptide
  • 3.2.9 Cyclisation of the peptide via disulfide formation
  • 3.2.10 Purification
  • 3.3 Synthesis of somatostatin analogues on 2% PS-HDODA resin
  • 3.3.1 Synthesis of octreotide
  • 3.3.1.1 Attachment of Boc-Thr (O-Bzl) to the chloromethyl resin
  • 3.3.1.2 Coupling of the subsequent amino acids
  • 3.3.1.3 Cleavage of the peptide from the resin
  • 3.3.1.4 Cyclisation of the peptide via disulfide formation
  • 3.3.2 Synthesis of TOC
  • 3.3.2.1 Attachment of Boc-Thr (O-Bzl) to the chloromethyl resin
  • 3.3.2.2 Coupling of subsequent amino acid units
  • 3.3.2.3 Cleavage of the peptide from the resin
  • 3.3.2.4 Hydrogenation of the peptide
  • 3.3.2.5 Cyclisation of the peptide via disulphide formation
  • 3.3.3 Synthesis of RC 160
  • 3.3.3.1 Coupling of Boc-Trp (N-CHO) to the chloromethylated resin
  • 3.3.3.2 Coupling of remaining amino acids
  • 3.3.3.3 Cleavage of the peptide from the resin
  • 3.3.3.4 Hydrogenation of the peptide
  • 3.3.3.5 Cyclisation of the peptide via disulphide formation
  • 3.4 Synthesis of somatostatin analogues on 2%PS-DVB resin
  • 3.4.1 Synthesis of octreotide
  • 3.4.1.1 Attachment of Boc-Thr (O-Bzl) to the chloromethy resin
  • 3.4.1.2 Coupling of the subsequent amino acids
  • 3.4.1.3 Cleavage of the peptide from the resin
  • 3.4.1.4 Cyclisation of the peptide via disulphide formation
  • 3.4.2 Synthesis of Tyr3-Octreotide
  • 3.4.2.1 Attachment of Boc-Thr (O-Bzl) to the chloromethylresin
  • 3.4.2.2 Coupling of subsequent amino acids
  • 3.4.2.3 Cleavage of the peptide from the resin
  • 3.4.2.4 Hydrogenation of the peptide
  • 3.4.2.5 Cyclisation of the peptide via disulphide formation
  • 3.4.3 Synthesis of RC 160
  • 3.4.3.1 Coupling of Boc-Trp (N-CHO) to the chloromethylated resin
  • 3.4.3.2 Coupling of subsequent aminoacids
  • 3.4.3.3 Cleavage of the peptide from the resin
  • 3.4.3.4 Hydrogenation of the peptide
  • 3.4.3.5 Cyclisation of the peptide via disulphide formation
  • 4 RESULTS AND DISCUSSION
  • 4.1 Preparation of the solid support
  • 4.1.1 Preparation of 1, 6-hexanediol diacryiate cross linked polystyrene support
  • 4.1.2 Chloromethylation of the resin
  • 4.1.3 Determination of the chlorine capacity of the resin
  • 4.2. Preparation of protected amino acids for peptide synthesis
  • 4.2.1. Protection of side chain functions
  • 4.2.1.1 Blocking the sulfhydryl group of cysteine as S-Acm-Cys
  • 4.2.1.2 Protection of E-aminogroup of lysine
  • 4.2.1.3 Blocking hydroxyl group of threonine
  • 4.2.1.4 Blocking hydroxyl group of tyrosine
  • 4.2.1.5 Protection of indole nitrogen of tryptophan
  • 4.2.2 Preparation of Boc-amino acids
  • 1R Values of the Boc-amino acids
  • Melting points of Boc-amino acids
  • 4.3 Synthesis of somatostatin analogues on 2% PS-HDODA support
  • 4.3.1 Synthesis of D-Phe1- octreotide
  • 4.3.2 Synthesis of Tyr3- octreotide
  • 4.3.3 Synthesis of RC 160
  • 4.4 Synthesis of somatostatin analogues on 2% PS-DVB resin
  • 4.4.1 Synthesis of D-Phe- octreotide
  • 4.4.2 Synthesis of Tyr3- octreotide
  • 4.4.3 Synthesis of RC 160
  • 5 SUMMARY
  • 6 REFERENCES