• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 159
 
Full Screen

  • TITLE
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • ABBREVIATIONS
  • CONTENTS
  • 1. INTRODUCTION
  • 1.1 Objectives of the work
  • 1.2 Organisation of the thesis
  • References
  • 2. SOLID PHASE PEPTIDE SYNTHESIS USING POLYMERIC SUPPORTS
  • 2.1 Structure and properties of the resins
  • 2.1.1 Physical properties
  • 2.1.2 Reactivity of functionolised polymers
  • 2.2 Solid phase peptide synthesis
  • 2.3 Problems in the synthesis of peptides
  • 2.3.1 Incompatibility o f the supports
  • 2.3.2 Incomplete coupling and deprotection reactions
  • 2.3.3 Non equivalence of reactive sites
  • 2.4 Different supports for peptide synthesis
  • 2.4.1 Poly (acrylamide) s
  • 2.4.2 Poly (ethyleneglycol) s
  • 2.5 Recent trends in solid phase peptide synthesis
  • References
  • 3. RESULTS AND DISCUSSION
  • 3.1 Polymer synthesis
  • 3.1.1 Preparation of poly (acrylamide) s crosslinked with DVB, TEGDMA, TTEGDA and NNMBA
  • 3.2 Functionalassassin of the cross linked polymer
  • 3.2.1 Transamidation of cross linked poly (acrylamide) s to poly (N-2-aminoethyl acrylamide) s
  • 3.3 Swelling characteristics of the crosslinked poly (acrylamide) resins
  • 3.4 Preparation of polystyrenes crosslinked with DVB, HDODA, TTEGDA and TEGDMA
  • 3.5 Swelling studies of the crosslinked polystyrene resins
  • 3.6 Functionalisation of crosslinked polystyrenes
  • 3.6.1 Chloromethylation
  • 3.6.2 Introduction of aminomethyl group in the polystyrene resins
  • 3.7 Functional group analysis
  • 3.8 Reactivity studies
  • 3.8.1 Effect of molecular character of the cross linking agent
  • 3.8.2 Eject of degree of cross linking
  • 3.8.3 Effect of solvent
  • 3.9 Acylation reaction
  • 3.10 Reactivity studies of polystyrene supports
  • 3.10.1 Effect of polymer backbone on the reactivity
  • 3.10.2 Effect of solvent
  • 3.10.3 Effect of particle size on reactivity
  • 3.10.4 Concentration of the functional groups
  • 3.11 Gel polymers or lightly crosslinked systems
  • Fig.3.7. Scanning electron micrographs of (a) 5% and (b) 10% TTEGDA crosslinked poly (acylamide) s.
  • 3.12 Kinetics of aminolysis of p-nitrophenyl ester of benzoyl glycine by the polymeric amines
  • 3.13 Mechanistic model
  • References
  • 4. OPTIMISATION OF THE SUPPORT AND SYNTHESIS OF BIOACTIVE PEPTIDES
  • 4.1 Synthesis of Gly-Leu
  • 4.2 Synthesis of G!y-Gly-Phe-Leu
  • 4.3 Optimisation of the support by synthesis of Ser-Phe-Leu-Glu
  • 4.4 Synthesis of GAP-43 protein segment (1-12) Met-Leu-Cys-Cys-Met-Arg; -Arg-Thr-Lys-Gln-Trp-Gly
  • 4.5 Synthesis of Src family member Gm Gly-Cys-Thr-Leu-Ser-Ala-•Glu-Glu-Arg-Ala-Ala-Leu-Glu-Arg-Ser-Trp
  • 4.6 Synthesis of seminal plasmin segment Pro-Lys-Leu-Leu-Thr-Lys-Phe-Leu-Lys-Ser-Trp-Lys-Lys-Ire-GIy
  • 4.7 Synthesis of a hexapeptide of COMT (112-117) Val-Thr-Leu-Val-Val-Gly
  • 4.8 Synthesis of COMT segment (204-210) Val-Asp-Gly-Leu-Glu-Lys-Ala
  • 4.9 Synthesis of COMT (160--171) Leu-Arg-Lys-Gly-Thr-Val-Leu-Leu-Ala-Asp-Asn-Val References
  • References
  • 5. EXPERIMENTAL
  • Part A: Preparation of Polymers, Functionalisation and Reactivity Studies
  • 5.1 Materials and methods
  • 5.1.1 Sources of chemicals
  • 5.2 Polymer synthesis
  • 5.2.1 Preparation of cross linked poly (acrylamide) resins
  • 5.2.2 Preparation of crosslinked polystyrene resins
  • 5.3 Functionalisation of polymers
  • 5.3.1 Functionalisation of poly (acrylamide) s with ethylenediamine
  • 5.3.2 Preparation of chloromethylmethylether
  • 5.3.3 Preparation of IM ZnC12 solution in H IF
  • 5.3.4 Functionalisation of crosslinked polystyrenes by chloromethylation
  • 5.3-5 Preparation of amino methyl resins
  • 5.4 Estimation of functional groups
  • 5.4.1 Estimation of chlorine capacity
  • 5.4.2 Estimation of amino capacity
  • 5.5 Swelling studies
  • 5.6 Reactivity studies
  • 5.6.1 Preparation of p-nitrophenyl ester of benzoyl glycine
  • 5.6.2 Kinetics of aminolIsis of p-nitrophenyl ester of benzoyl glycine
  • 5.6.3 Estimation of functional group efficiency towards amide bond formation
  • Part B: Peptide Synthesis-Experimental
  • 5.7 Source of chemicals
  • 5.8 Purification of reagents and solvents
  • 5.9 Physical measurements
  • 5.10 Detection
  • 5.10.1 Thin layer chromatography
  • 5.10.2 Identification of the peptide on tic
  • 5.11 Visualisation
  • 5.12 Preparation of Boc amino acid derivatives
  • 5.12.1 Preparation of Boc-azide from t -butyl carbazate
  • 5.12.2 Preparation of Boc-amino acids by Schnabels method
  • 5.12.3 Preparation of Boc amino acids by Boc-ON method
  • 5.13 Purity of Boc-amino acids
  • 5.14 General procedure for solid phase peptide synthesis
  • 5.14.1 First amino acid attachment by Gisins cesium salt method
  • 5.14.2 Attachment of first amino acid by triethyl amine method
  • 5.14.3 Estimation of amino acid substitution level by picric acid method
  • 5.14.4 Deprotection
  • 5.14.5 Methods of coupling
  • 5.14.6 Cleavage of the peptide from the resin
  • 5.14.7 Purification
  • 5.14.8 Amino acid analysis
  • 5.14.9 Capping of the residual amino groups by acetylation
  • 5.15 Synthesis of the peptides
  • 5.15.1 Synthesis of Gly-Leu
  • 5.15.2 Synthesis of Gly-Gly-Phe-Leu
  • 5.15.3 Synthesis of Ser-Phe-Leu-Glu
  • 5.15.4 Synthesis of Val-Thr-Leu--Val-Val--Gly
  • 5.15.5 Synthesis of Val-Asp-Gly-Ieu-Glu-Lys-A la
  • 5.15.6 Synthesis of Leu Argue Lys-Gly-Thr-Val-Leu-Leu Ala Asp-Asn-Val
  • 5.15.7 Synthesis of Met-Leu-Cys-Cys Met Arg-Arg- Thr-Lys Gln-Trp-Gly
  • 5.15.8 Synthesis of Gly-Cys-Thr-Leu-Ser-Ala-Glu-GIu-Arg Ala-Ala-Leu-Glu-Arg-Ser-Trp
  • 5.15.9 Synthesis of Pro-Lyss-Leu-Leu-Thr-Lys-Phe-Leu-Lys-Ser T rp-Lys-Lys-Ile-Gly
  • References
  • 6. SUMMARY AND OUTLOOK
  • Poly (acrylamide) supports
  • Polystyrene supports
  • Reactivity studies
  • Peptide synthesis