• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 160
 
Full Screen

  • TITLE
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • PREFACE
  • List of publications
  • CONTENTS
  • 1. An Approach to the Study of Chaos
  • 1.1 Introduction
  • 1.1.1 Control of chaos
  • 1.1.2 Historical developments
  • 1.2 Dynamical systems
  • 1.2.1 Discrete-time dynamical system
  • 1.2.2 Continuous-time dynamical systems
  • 1.2.3 Poincare map
  • 1.2.4 Conservative and dissipative dynamical systems.
  • 1.3 Attractors
  • 1.3.1 Point attractor
  • 1.3.2 Periodic attractor
  • 1.3.3 Quasiperiodic attractor
  • 1.3.4 Strange attractor
  • 1.4 Sensitive dependence on Initial Conditions [SIC-ness]
  • 1.5 Fractal nature
  • 2. Chaos in One Dimensional Systems
  • 2.1 Introduction
  • 2.1.1 Logistic map
  • 2.2 Period-doubling Phenomena
  • 2.2.1 Metric universality: Feigenbaum constants (α & δ)
  • 2.3 Feigenbaum attractor as a fractal
  • 2.4 Tangent bifurcation
  • 2.5 Intermittency
  • 2.6 Crisis
  • 3. Characterisation of Chaos in Maps
  • 3.1 Introduction
  • 3.2 Time series, Power Spectrum and Correlation Function.
  • 3.3 Lyapunov Exponents (LE)
  • 3.4 Multifractal nature of the Feigenbaum attractor
  • 3.5 Multifractal and (f - α) Spectrum
  • 3.6 Self-similarity of the Feigenbaum attractor
  • 4. Bimodal Maps
  • 4.1 Introduction
  • 4.1.1 The dynamics of bubbling and bistability
  • 4.2 Graphical analysis
  • 4.3 Parameter-space plot
  • 4.4 Case studies of- type I maps
  • 4.5 Exponential maps of type I and type II
  • 4.6 Maps of type III
  • 4.7 Conclusion
  • 5. Critical Exponents in the Transition to Chaos in One Dimensional Discrete Systems
  • 5.1 Introduction
  • 5.2 Unimodal & bimodal maps
  • 5.3 Scaling behaviour in fractal dimensions
  • 5.4 Critical exponents in the (f - a) spectrum
  • 5.5 Scaling of Lyapunov Exponents
  • 5.6 Conclusion
  • 6. Stochastic Resonance and Chaotic Resonance in Bimodal Maps
  • 6.1 Introduction
  • 6.2 Double-well potential model
  • 6.3 Results of numerical simulation for SR and CR
  • 6.4 Effect of coupling
  • 6.5 Conclusion
  • 7. Conclusion
  • BIBILIOGRAPHY